References
- J. R. Artalejo and A. Gomez-Corral, Retrial Queueing Systems, A Computational Approach, Hidelberg, Springer-Verlag, 2008.
- G. I. Falin and J. G. C. Templeton, Retrial Queues, London, Chapman and Hall, 1997.
- H. Takagi, Queueing Analysis, Vol. 1. Vacation Systems, Elsevier Science, Amsterdam, 1991.
- N. Tian and Z. G. Zhang, Vacation Queuing Models: Theory and Applications, Springer, New York, 2006.
- J. R. Artalejo, Analysis of an M/G/1 queue with constant repeated attempts and server vacations, Computers & Operations Research, 24 (1997), 493-504. https://doi.org/10.1016/S0305-0548(96)00076-7
- M. Boualem, N. Djellab and D. Aissani, Stochastic inequalities for M/G/1 retrial queues with vacations and constant retrial policy, Mathematical and Computer Modelling, 50 (2009), 207-212. https://doi.org/10.1016/j.mcm.2009.03.009
- G. Choudhury and J. C. Ke, A batch arrival retrial queue with general retrial times under Bernoulli vacation schedule for unreliable server and delyed repair, Applied Mathematical Modelling, 36 (2012), 255-269. https://doi.org/10.1016/j.apm.2011.05.047
- J. C. Ke and F. M. Chang, Modified vacation policy for M/G/1 retrial queue with balking and feedback, Computers & Industrial Engineering, 57 (2009), 433-443. https://doi.org/10.1016/j.cie.2009.01.002
- B. K. Kummar, R. Rukmani and V. Thangaraj, An M/M/c retrial queueing system with Bernoulli vacations, Journal of Systems Science and Systems Engineering, 18(2) (2009), 222-242. https://doi.org/10.1007/s11518-009-5106-1
- G. Choudhury, Steady state analysis of an M/G/1 queue with linear retrial policy and two phase service under Bernoulli vacation schedule, Applied Mathematical Modelling, 32 (2008), 2480-2489. https://doi.org/10.1016/j.apm.2007.09.020
- T. Phung-Duc and K. Kawanishi, Multi-server retrial queues with after-call-work, Numerical Algebra, Control and Optimization, 1(4) (2011), 639-656. https://doi.org/10.3934/naco.2011.1.639
- Y. W. Shin, Algorithmic approach to Markovian multi-server retrial queue with vacations, Applied Mathematics and Computation, 250 (2015), 287-297. https://doi.org/10.1016/j.amc.2014.10.079
- Y.W. Shin and D. H. Moon, Approximation of M/M/c retrial queue with PH-retrial times European Journal of Operational Research, 213 (2011), 205-209. https://doi.org/10.1016/j.ejor.2011.03.024
- Y. W. Shin and D. H. Moon, Approximation of PH/PH/c retrial queue with PH-retrial time, Asia-Pacific Journal of Operational Research, 31(2) (2014), 140010 (21 pages).
- Y. W. Shin, Ergodicity of M AP/PH/c/K retrial queue with server vacations, Submitted for publication.
- X. Xu and Z.G. Zhang, Analysis of multiple-server queue with a single vacation (e, d)-policy, Performance Evaluation, 63 (2006), 825-838. https://doi.org/10.1016/j.peva.2005.09.003
- M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models - An Algorithmic Approach, Baltimore, Johns Hopkins University Press, 1981.
- R. W. Wolff, Stochastic Modeling and the Theory of Queues, Prentice-Hall, Inc. Englewood Cliffs, 1989.
- H. Tijms, A First Course in Stochastic Models, Wiley, 2003.
- Y.W. Shin, Fundamental matrix of transientQBD generator with finite states and level dependent transitions, Asia-Pacific Journal of Operational Research, 26 (2009), 697-714. https://doi.org/10.1142/S0217595909002407
- S. Wolfram, Mathematica, 2nd ed. Addison-Wesley, 1991.
- W. D. Kelton, R. P. Sadowski and D. A. Sadowski, Simulation with ARENA, 2nd Ed., New York, McGraw-Hill, 1998.
- W. Whitt, Approximating a point process by a renewal process, I: two basic methods, Operations Research, 30 (1982), 125-147. https://doi.org/10.1287/opre.30.1.125
- A. Bobbio, A. Horvath and M. Telek, Matching three moments with minimal acyclic phase type distributions, Stochastic Models, 21 (2005), 303-326. https://doi.org/10.1081/STM-200056210
Cited by
- DIMENSION REDUCTION FOR APPROXIMATION OF ADVANCED RETRIAL QUEUES : TUTORIAL AND REVIEW vol.35, pp.5, 2015, https://doi.org/10.14317/jami.2017.623