참고문헌
- E. H. Georgoulis and E. Suli, Optimal error estimates for the hp-version interior penalty discontinous Galerkin finite element method, IMA J. Numer. Anal., 25 (2005), 205-220. https://doi.org/10.1093/imanum/drh014
- P. Houston, C. Schwab, and E. Suli, Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal., 39 (2002), 2133-2163. https://doi.org/10.1137/S0036142900374111
- I. Mozolevski and E. Suli, A priori error analysis for the hp-version of the discontinuous Galerkin finite element method for the biharmonic equation, Comput. Meth. Appl. Math., 3 (2003), 1-12.
- I. Mozolevski, E. Suli, and P. R. Bosing, hp-version a priori error analysis of interior penalty discontinuous Galerkin finite element approximations to the biharmonic equation, J. Sci. Comput., 30 (2007), 465-491. https://doi.org/10.1007/s10915-006-9100-1
- D. Schotzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinous Galerkin finite element method, SIAM J. Numer. Anal., 38 (2000), 837-875. https://doi.org/10.1137/S0036142999352394
- I. Babuska, R. Tempone, and G. E. Zouraris, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42 (2004), 800-825. https://doi.org/10.1137/S0036142902418680
- I. Babuska, R. Tempone, and G. E. Zouraris, Solving elliptic boundary value problems with uncertain coefficients by the finite element method: the stochastic formulation, Comput. Method Appl. Mech. Engrg., 194 (2005), 1251-1294. https://doi.org/10.1016/j.cma.2004.02.026
- P. Frauenfelder, C. Schwab, and R. A. Todor, Finite elements for elliptic problems with stochastic coefficients, Comput. Method Appl. Mech. Engrg., 194 (2005), 205-228. https://doi.org/10.1016/j.cma.2004.04.008
- I. Babuska and P. Chatzipantelidis, On solving elliptic stochastic partial differential equations, Comput. Method Appl. Mech. Engrg., 191 (2002), 4093-4122. https://doi.org/10.1016/S0045-7825(02)00354-7
- I. Babuska, K. Liu, and R. Tempone, Solving stochastic partial differential equations based on the experimental data, Math. Models Methods Appl. Sci., 13 (2003), 415-444. https://doi.org/10.1142/S021820250300257X
- M. K. Deb, I. Babuska, and J. T. Oden, Solution of stochastic partial differential equations using Galerkin finite element techniques, Comput. Method Appl. Mech. Engrg., 190 (2001), 6359-6372. https://doi.org/10.1016/S0045-7825(01)00237-7
- M. D. Gunzburger, H.-C. Lee, and J. Lee, Error estimates of stochastic optimal Neumann boundary control problems, SIAM J. Numer. Anal., 49 (2011), 1532-1552. https://doi.org/10.1137/100801731
- H.-C. Lee and J. Lee, A Stochastic Galerkin Method for Stochastic Control Problems, Commun. Comput. Phys., 14 (2013), 77-106. https://doi.org/10.4208/cicp.241011.150612a
- L. S. Hou, J. Lee, and H. Manouzi Finite Element Approximations of Stochastic Optimal Control Problems Constrained by Stochastic Elliptic PDEs, J. Math. Anal. Appl. Vol., 384 (2011), 87-103. https://doi.org/10.1016/j.jmaa.2010.07.036
- C. Schwab and R. A. Todor, Sparse finite elements for elliptic problems with stochastic loading, Numer. Math., (2003), 707-734. https://doi.org/10.1007/s00211-003-0455-z
- K. Chrysafinos, Moving mesh finite element methods for an optimal control problem for the advection-diffusion equation, J. Sci. Comput., 25 (2005), 401-421. https://doi.org/10.1007/s10915-004-4804-6
- M. D. Gunzburger, L. S. Hou, and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with distributed and Neumann controls, Math. Comp. 57 (1991), 123-151. https://doi.org/10.1090/S0025-5718-1991-1079020-5
- M. D. Gunzburger, L. S. Hou, and T. Svobodny, Analysis and finite element approximation of optimal control problems for the stationary Navier-Stokes equations with Cirichlet controls, RAIRO Model. Math. Anal. Numer., 25 (1991), 711-748. https://doi.org/10.1051/m2an/1991250607111
- M. D. Gunzburger and L. S. Hou, Finite-dimensional approximation of a class of constrained nonlinear optimal control problems, SIAM J. Control. Optim., 34 (1996), 1001-1043. https://doi.org/10.1137/S0363012994262361
- L. S. Hou and S. S. Lavindran, A penalized neumann control approach for solving an optimal dirichlet control problem for the Navier-Stokes equations, SIAM J. Control. Optim., 36 (1998), 1795-1814. https://doi.org/10.1137/S0363012996304870
- I. Babuska, B. A. Szabo, and I. N. Katz, The p-version of the finite element method, SIAM J. Numer. Anal., 18 (1981), 515-545. https://doi.org/10.1137/0718033
- W. Gui and I. Babuska, The h, p and h-p versions of the finite element method in 1 dimension. I. The error analysis of the p-version, Numer. Math., 49 (1986), 577-612. https://doi.org/10.1007/BF01389733
- W. Gui and I. Babuska, The h, p and h-p versions of the finite element method in 1 dimension. II. The error analysis of the h- and h-p versions, Numer. Math., 49 (1986), 613-657. https://doi.org/10.1007/BF01389734
- W. Gui and I. Babuska, The h, p and h-p versions of the finite element method in 1 dimension. III. The adaptive h-p version, Numer. Math., 49 (1986), 659-683. https://doi.org/10.1007/BF01389735
- B. Guo and I. Babuska, it The h-p version of the finite element method. I. The basic approximation results, Comput. Mech., 1 (1986), 21-41. https://doi.org/10.1007/BF00298636
- I. Babuska and B. Q. Guo, The h-p version of the finite element method for domains with curved boundaries, SIAM J. Numer. Anal., 25 (1988), 837-861. https://doi.org/10.1137/0725048
- B. Guo, The h-p version of the finite element method for elliptic equations of order 2m, Numer. Math., 53 (1988), 199-224. https://doi.org/10.1007/BF01395885
- I. Babuska and H.-S. Oh, The p-version of the finite element method for domains with corners and for infinite domains, Numer. Methods Partial Differential Eq., 6 (1990), 371-392. https://doi.org/10.1002/num.1690060407
- I. Babuska and M. Suri, The p and h-p versions of the finite element method, basic principles and properties, SIAM Rev., 36 (1994), 578-632. https://doi.org/10.1137/1036141
- I. Babuska and J. M. Melenk, The partition of unity finite element method, Technical Note BN-1185, Inst. Phys. Sci. Tech., (1995).
- I. Babuska and F. Ihlenburg, Finite element solution of the Helmholtz equation with high wave number part II: The h-p version of the FEM, SIAM J. Numer. Anal., 34 (1997), 315-358. https://doi.org/10.1137/S0036142994272337
- P. Chen and A. Quarteroni, Weighted Reduced Basis Method for Stochastic Optimal Control Problems with Elliptic PDE Constraint, SIAM/ASA J. Uncert. Quant., 2 (2014), 364-396. https://doi.org/10.1137/130940517
- E. Rosseel and G. N.Wells, Optimal control with stochastic PDE constraints and uncertain controls, Comput. Methods Appl. Mech. Engrg., (2012), 152-167.
- H. Tiesler, R. M. Kirby, D. Xiu, and T. Preusser, Stochastic collocation for optimal control problems with stochastic PDE constraints, SIAM J. Control Optim., 50 (2012), 2659-2682. https://doi.org/10.1137/110835438
- M. Eigel, C. J. Gittelson, C. Schwab, and E. Zander, A convergent adaptive stochastic Galerkin finite element method with quasi-optimal spatial meshes, ESAIM: M2AN, 49 (2015), 1367-1398. https://doi.org/10.1051/m2an/2015017
- R. Adams, Sobolev Spaces, Academic, New York, 1975.
- J. Galvis and M. Sarkis, Approximating infinity-dimensional stochastic Darcy's equations without uniform ellipticity, SIAM J. Numer. Anal., 47 (2009), 3624-3651. https://doi.org/10.1137/080717924
- S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Second Edition, Springer, 2002.
- R. G. Ghanem and P. D. Spanos, Stochastic finite elements: A spectral approach, Springer-Verlag, 1991.
- W. Luo, Wiener chaos expansion and numerical solutions of stochastic partial differential equations, Ph.D. thesis, California institute of technology, Pasadena, California 2006.
- F. Brezzi, J. Rappaz, and P. Raviart, Finite-dimensional approximation of nonlinear problems. Part I: Branches of nonsingular solutions, Numer. Math., 36 (1980), 1-25. https://doi.org/10.1007/BF01395985
- M. Crouzeix and J. Rappaz, On numerical approximation in bifurcation theory, Masson, Parix, 1990.
- V. Girault and P. Raviart, Finite element methods for Navier-Stokes equations, Springer, Berlin, 1986.
- D. Xiu, Numerical methods for stochastic computationss, Princeton, 2010.