DOI QR코드

DOI QR Code

The Characteristics of Heavy Metal Accumulations in Feral Pigeon (Columba livia) Eggshells for Environmental Monitoring

환경모니터링을 위한 집비둘기 알 껍데기의 중금속 축적특성 연구

  • Lee, Jangho (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Jongchun (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Park, Jong-Hyouk (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Eugene (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Shim, Kyuyoung (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Kim, Myungjin (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Shin, Youngkyu (Natural Environment Research Division, National Institute of Environmental Research)
  • 이장호 (국립환경과학원 자연환경연구과) ;
  • 이종천 (국립환경과학원 자연환경연구과) ;
  • 박종혁 (국립환경과학원 자연환경연구과) ;
  • 이유진 (국립환경과학원 자연환경연구과) ;
  • 심규영 (국립환경과학원 자연환경연구과) ;
  • 김명진 (국립환경과학원 자연환경연구과) ;
  • 신영규 (국립환경과학원 자연환경연구과)
  • Received : 2015.10.12
  • Accepted : 2015.11.19
  • Published : 2015.12.31

Abstract

The heavy metal accumulations of avian eggshells were studied in order to test a feral pigeon (Columba livia)'s eggshell as an indicator for the environmental monitoring of pollutants. The reviews on the eggs of the different 19 avian species showed that it is the eggshell rather than the egg content that can better reflect the heavy metals in the environment; in most cases the CVs (coefficients of variations) of the heavy metal concentrations in the eggshells were higher than those in the egg contents. This can indicate that the heavy metal accumulations are homeostatically controlled in the egg contents, but the accumulations in the eggshells are varied according to the environmental conditions. To test the reviews, the feral pigeon eggs from the two different sites, one representing urban and the other rural environment, were analyzed for lead (Pb) and cadmium (Cd). The result showed that the eggshells of the urban pigeons (Hangang) had the higher metal concentrations than those of the rural pigeons (Hampyeong). The same difference can also be found in the internal organs (liver, bone) and blood. However, the analyses of the egg contents between the two sites did not reveal the differences. In other words, the result suggests that the feral pigeons, like the other avian species, are able to control the heavy metals into the egg contents homeostatically. Therefore, it is more useful to use the feral pigeon eggshell rather than the egg content in case of monitoring heavy metals in different habitats.

본 연구에서는 알 껍데기 시료의 중금속 축적특성을 파악하기 위해 알의 중금속 축적을 연구한 자료들을 정리하여 알 껍데기와 내용물의 축적특성을 비교 검토한 후 집비둘기 알 껍데기의 중금속 모니터링 시료로서의 가능성을 고찰하였다. 먼저 집비둘기(Columba livia)를 포함한 19종의 조류 알을 대상으로 카드뮴(Cd) 등 8종의 중금속 축적농도를 검토한 결과, 알 껍데기 중금속 농도의 변동계수(표준편차/평균)는 알 내용물에 비해 대체적으로 높은 값을 나타냈다. 이는 알 내용물 속 배(embryo)가 중금속 독성에 노출되지 않도록 하는 생리적 항상성 통제기작의 발달과 관련이 있는 것으로 판단된다. 이에 비해 알 껍데기는 서식환경 등에 따라 중금속 축적 변동이 알 내용물보다 크게 나타났는데, 이는 서식환경에 따른 중금속 축적 변동을 알 내용물보다는 더 적절히 반영할 가능성이 있다고 해석될 수 있다. 집비둘기 알 껍데기가 체내 장기 조직 등의 유해 중금속(납, 카드뮴) 축적농도 패턴을 반영하는 지를 검토한 결과, 도심지역 한강공원이 체내 장기 조직 등에서 농촌지역인 함평공원보다 높은 납과 카드뮴 축적농도를 보였고, 이러한 차이는 알 껍데기에서도 두드러지게 나타났지만, 알 내용물에서는 지점 간에 차이가 없었다. 이러한 결과는 알 내용물 속 배(embryo)의 안전한 발달을 위해 중금속 축적을 통제하는 항상성 기작이 알 내용물에 더 강화되어 나타나는 특성과 관련이 있는 것으로 판단된다. 이상의 결과로 볼 때, 알 껍데기가 서식환경에 따른 중금속 축적 변동을 알 내용물보다는 더 적절히 반영할 가능성이 크다고 판단된다.

Keywords

References

  1. 김상진, 이종남, 이두표. 2006. 한국에 도래하는 아비류의 카드뮴과 납 축적 레벨, J. Eco. Field Biol., 29(6), 539-543. https://doi.org/10.5141/JEFB.2006.29.6.539
  2. 김정수, 이두표, 구태회. 2003. 서울지역에 서식하는 집비둘기 Columba livia의 깃털을 이용한 중금속오염 모니터링, 한국생태학회지, 26(3), 91-96.
  3. 남동하, 이두표, 구태회. 2003. 도심 지역과 공단지역에 서식하는 비둘기의 알, 새끼, 성조의 납 과 카드뮴 농도 비교, Korean J. Environ. Biol., 21(2), 142-148.
  4. 이장호, 이종천, 이상희, 이유진, 한아름, 오길종. 2013. 환경오염 지표종인 집비둘기 시료의 부위별 중금속 농축특성 연구, 국립환경과학원 보고서.
  5. 이장호, 이종천, 이상희 김명진, 이유진, 한아름, 심규영. 2014. 환경모니터링을 위한 집비둘기 깃털의 중금속 축적특성 연구, 환경영향평가, 23(6), 492-504. https://doi.org/10.14249/eia.2014.23.6.492
  6. 신주렬, 김정수, 구태회. 2008. 우리나라 야생조류의 납과 카드뮴 농도, Korean J. Environ. Biol., 26(1), 8-14.
  7. Abduljaleel SA, Shuhaimi-Othman M, Babji A. 2011. Variation in trace elements levels among chicken, quail, guinea fowl and pigeon eggshell and egg content, Research Journal of Environmental Toxicology, 5(5), 301-308. https://doi.org/10.3923/rjet.2011.301.308
  8. Al-Obaidi FA, Mehdi BI, Al-Shdeedi SM. 2012. Identification of inorganic elements in egg shell of some wild birds in Baghdad, Advances in Applied Science Research, 3(3), 1454-1458.
  9. Brait CHH, Antoniosi Filho NR. 2011. Use of feathers of feral pigeons as a technique for metal quantification and environmental monitoring, Environmental Monitoring Assessment, 179, 457-467. https://doi.org/10.1007/s10661-010-1748-1
  10. Burger J. 1993. Metals in avian feathers: bioindicators of environmental pollution, Rev. Environ. Toxicol., 5, 203-311.
  11. Burger J. 2002. Food chain differences affect heavy metal in bird eggs in Barnegat Bay, New Jersey, Environmental Research Section A, 90, 33-39. https://doi.org/10.1006/enrs.2002.4381
  12. Burger J, Gochfeld M. 1985. Comparison of nine heavy metals in salt gland and liver of Great Scaup (Aythya marila), Black Duck (Anas rubripes), and Mallard (A. platyrhynchos), Compar. Biochem. Physiol., 81C, 287-292.
  13. Dauwe T, Bervoets L, Blust R, Pinxten R, Eens M. 1999. Are eggshell and egg contents of great and blue tits suitable as indicators of heavy metal pollution?, Belg. J. Zool., 129(2), 439-447.
  14. Dauwe T, Lieven B, Ellen J. 2002. Great and blue tit feathers as biomonitors for heavy metal pollution, Ecological Indicators, 1, 227-234. https://doi.org/10.1016/S1470-160X(02)00008-0
  15. Falchuk KH. 1998. The molecular basis for the role of zinc in developmental biology, Molecular and Cellular Biochemistry, 188, 41-48. https://doi.org/10.1023/A:1006808119862
  16. Falchuk KH, Montorzi M. 2001. Zinc physiology and biochemistry in oocytes and embryos, BioMetals, 14, 385-395. https://doi.org/10.1023/A:1012994427351
  17. Feinblatt JD. 1982. The comparative physiology of calcium regulation in sbumammalian vertebrates, Advances in Comparative Physiology and Biochemistry, 8, 74-97.
  18. Hui CA. 2002. Concentration of chromium, manganese, and lead in air and in avian eggs, Environmental Pollution, 120, 201-206. https://doi.org/10.1016/S0269-7491(02)00158-6
  19. Ikemoto T, Kunito T, Tanabe S, Tsurumi M, Sato F, Oka N. 2005. Non-destructive monitoring of trace element levels in short-tailed albatrosses (Phoebastria albatrus) and black-footed albatrosses (Phoebastria nigripes) from Torishima Island, Japan using eggs and blood, Marine Pollution Bulletin, 51, 889-895. https://doi.org/10.1016/j.marpolbul.2005.06.003
  20. Johnston RF, Janiga M. 1995. Feral Pigeons, Oxford University Press, Inc.
  21. Kim J, Oh J-M. 2014. Trace element concentrations in eggshells and egg contents of black-tailed gull (Larus crassirostris) from Korea, Ecotoxicology, 23, 1147-1152. https://doi.org/10.1007/s10646-014-1256-0
  22. Klein R, Bartel-Steinbach M, Koschorreck J, Paulus M, Tarricone K, Teubner D, Wagner G, Weinmann T, Veith M. 2012. Standardization of egg collection from aquatic birds for biomonitoring - a critical review, Environ, Sci. & Tech., 1-40.
  23. Miles RD. 2000. Trace minerals and avian embryo development, Ciencia Animal Brasileira, 2(1), 1-10.
  24. Mora MA. 2003. Heavy metals and metalloids in egg contents and eggshell of passerine birds from Arizona, Environmental Pollution, 125, 393-400. https://doi.org/10.1016/S0269-7491(03)00108-8
  25. Morera M, Sanpera C, Crespo S, Jover L, Ruiz X. 1997. Inter- and intraclutch variability in heavy metals and selenium levels in audouin's gull eggs from the Ebro Delta, Spain, Arch. Environ. Contam. Toxicol., 33, 71-75. https://doi.org/10.1007/s002449900225
  26. Nagel P, Smrekar G, Haag-Wackernagel D. 2001. Use of feral pigeon eggs for urban biomonitoring, Fresenius Environmental Bulletin, 10(1), 18-25.
  27. Paulus M, Bartel M, Klein R, Quack M, Tarricone K, Teubner D, Wagner G. 2010. Guideline for sampling and sample treatment, Feral pigeon (Columba livia f. domestica), Umweltprobenbank des Bundes.
  28. Nisianakis P, Giannenas I, Gavriil A, Kontopidis G, Kyriazakis I. 2009. Variation in trace element contents among chicken, turkey, duck, goose, and pigeon eggs analyzed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Biol. Trace Elem. Res., 128, 62-71. https://doi.org/10.1007/s12011-008-8249-x
  29. Rabinowitz MB. 1991. Toxicokinetics of bone lead, Environmental Health Perspectives, 91, 33-37. https://doi.org/10.1289/ehp.919133
  30. Ruuskanen S, Laaksonen T, Morales J, Moreno J, Mateo R, Belskii E, Bushuev A, Jarvinen A, Kerimov A, Krams I, Morosinotto C, Mand R, Orell M, Qvarnstrom A, Slater F, Tilgar V, Visser ME, Winkel W, Zang H, Eeva T. 2014. Large-scale geographical variation in eggshell metal and calcium content in a passerine bird (Ficedula hypoleuca), Environ Sci Pollut Res., 21, 3304-3317. https://doi.org/10.1007/s11356-013-2299-0
  31. Scheuhammer AM. 1987. The chronic toxicity of aluminium, cadmium, mercury, and lead in birds: a review, Environmental Pollution, 46, 263-295. https://doi.org/10.1016/0269-7491(87)90173-4
  32. Swaileh KM, Sansur R. 2006. Monitoring urban heavy metal pollution using the house sparrow (Passer domesticus), J. Environ. Monit., 8, 209-213. https://doi.org/10.1039/B510635D
  33. Tsipoura N, Burger J, Newhouse M, Jeitner C, Gochfeld M, Mizrahi D. 2011. Lead, mercury, cadmium, chromium, and arsenic levels in eggs, feathers, and tissues of canada geese of the New Jersey Meadowlands, Environmental Research, 111, 775-784. https://doi.org/10.1016/j.envres.2011.05.013
  34. Wiemann M, Schirrmacher K, Busselberg D. 1999. Interference of lead with the calcium release activated calcium flux of osteoblast-like cells, Calcified Tissue International, 65, 479-485. https://doi.org/10.1007/s002239900736