DOI QR코드

DOI QR Code

Diversity Assessment of Microorganisms Isolated from Concrete Structures

콘크리트 구조물에서 분리한 미생물의 다양성 평가

  • 김화중 (경북대학교 건설환경에너지공학부) ;
  • 이준철 (경북대학교 대경권 국토교통기술지역거점센터) ;
  • 천우영 (경북대학교 대학원 건설환경에너지공학부)
  • Received : 2015.09.08
  • Accepted : 2015.12.09
  • Published : 2015.12.30

Abstract

The microorganisms isolated directly from concrete structures were identified by 16S ribosomal RNA analysis, and a total of 75 microorganisms were finally identified. The DNA sequence information of the 75 microorganisms were registered to GenBank of NCBI (National Center for Biotechnology Information), USA, by the name of each microorganism to make the final report as the microorganisms isolated from concrete structures. These 75 microorganisms were identified and largely classified into three kinds of bacteria. There were 33 High G+C Gram positive Actinobacteria (44.00%), 23 Low G+C Gram positive Bacilli (30.67%), and 19 Gram negative Proteobacteria (25.33%), showing relatively diversely distribution on the concrete structures. The Nucleotide Blast Search of the 75 microorganisms indicated that they consisted of 29 Genus and 49 Species. Actinobacteria were finally identified to be the most prevalent on the concrete structures with relatively diverse species in this study. A variety of effective microorganisms could be assorted from these diverse microorganisms on the concrete structures, and those groups of strains, which are candidates for new species through various physiological and biochemical experiments, are expected to be very important research data from the perspective of environmentally friendly concrete.

Keywords

Acknowledgement

Supported by : 경북대학교, 한국연구재단

References

  1. Abo-El-Eneina, S. A., Alib, A. H., Talkhanc, Fatma N., & Abdel-Gawwad, H. A. (2013). Application of microbial biocementation to improve the physico-mechanical properties of cement mortar. Housing and Building National Research Center (HBRC) Journal, 9(1), 36-40.
  2. Almusallam, A. A. (2001). Effect of environmental conditions on the properties of fresh and hardened concrete. Cement and Concrete Composites, 23(4-5), 353-361. https://doi.org/10.1016/S0958-9465(01)00007-5
  3. Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143-169.
  4. Banat, I. M., Marchant, R., & Rahman, T. J. (2004). Geobacillus debilis sp. nov., a novel obligately thermophilic bacterium isolated from a cool soil environment, and reassignment of Bacillus pallidus to Geobacillus pallidus comb. nov. International Journal of Systematic and Evolutionary Microbiology, 54(6), 2197-2201. https://doi.org/10.1099/ijs.0.63231-0
  5. Chang, P. K., Peng, Y. N., & Hwang, C. L. (2001). A design consideration for durability of high-performance concrete. Cement and Concrete Composites, 23(4-5), 375-380. https://doi.org/10.1016/S0958-9465(00)00089-5
  6. Chen, B., Zhong, D., & Monteiro, A. (2006). Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics, 156(7), 1-19.
  7. Chun, J. S., Lee, J. H., Jung, Y. Y., Kim, M. J., Kim, S. I., Kim, B. K., & Lim, Y. W. (2007). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 57(10), 2259-2261. https://doi.org/10.1099/ijs.0.64915-0
  8. Chun, W. Y., Kim, W. J., Park, S. J., & Ghim, S. Y. (2011). The 75 Microorganisms isolated from concrete structures. Strain KNUC9001-KNUC9075 16S ribosomal RNA gene, partial sequence, Accession Numbers JF505935-JF506009, http://www.ncbi.nlm.nih.gov/nuccore/accession no.
  9. Cottrell, M. T., & Kirchman, D. L. (2000). Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Applied and Environmental Microbiology, 66(12), 5116-5122. https://doi.org/10.1128/AEM.66.12.5116-5122.2000
  10. De Gusseme, B., De Schryver, P., De Cooman, M., & Verbeken, K., Boeckx, P., Verstraete, W., & Boon, N. (2009). Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal. FEMS Microbiology Ecology, 67(1), 151-61. https://doi.org/10.1111/j.1574-6941.2008.00598.x
  11. Emerson, D., Rentz, J. A., Lilburn, T. G., Davis, R. E., Aldrich, H., Chan, C., & Moyer, C. L. (2007). A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities. PLoS (Public Library of Science) ONE, 2(8), 1-9.
  12. Glöckner, F. O., Fuchs, B. M., & Aman, R. (1999). Bacterioplankton compositions of lakesand oceans: a first comparison based on fluorescence in situ hybridization. Applied and Environmental Microbiology, 65(8), 3721-3726.
  13. Grzybowska, W., Mlynarczyk, G., Mlynarczyk, A., Bocian, E., Luczak, M., & Tyski, S. (2007). Estimation of activity of pharmakopeal disinfectants and antiseptic against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment. Medycyna Doswiadczalna i Mikrobiologia, 59(1), 65-73.
  14. Hayward, D., Van Helden, P. D., & Wiid, I. J. (2009). Glutamine synthetase sequence evolution in the mycobacteria and their use as molecular markers for Actinobacteria speciation. BMC Evolutionary Biology, 48(9), 1-13.
  15. Im, J. Y., Sung, J. S., Kim, S. B., & You, M. Y. (2008). Center for Technology Fusion in Construction, Planning Report for Eco-friendly Advanced Construction Finishing Materials Using Bio/Nano Technology. Dong-Guk University: 24 January 2008, 1-150.
  16. Koerner, R. J., & Goodfellow, M., & Jones, A. L. (2009). The genus Dietzia: a new home for some known and emerging opportunist pathogens. FEMS Immunology and Medical Microbiology, 55(3), 296-305. https://doi.org/10.1111/j.1574-695X.2008.00513.x
  17. Kopteva, Zh. P., Zanina, V. V., Purish, L. M., Piliashenko-Novokhatnyi, A. I., & Kozlova, I. A. (2004). Microflora of damaged ferroconcrete structures under the conditions of inhibitory protection. Mikrobiolohichnyi zhurnal, 66(5), 68-75.
  18. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker Jr, C. T., Saxman, P. R., Stredwick, J. M., Garrity, G. M., Li, B., Olsen, G. J., Pramanik, S., Schmidt, T. M., & Tiedje, J. M. (2000). The RDP (Ribosomal Database project) continues. Nucleic Acids Research, 28(1), 173-174. https://doi.org/10.1093/nar/28.1.173
  19. Onyenwoke, R. U., Brill, J. A., Farahi, K., & Wiegel, J. (2004). Sporulation genes in members of the low G+C Gram-type-positive phylogenetic branch (Firmicutes). Archives of Microbiology, 182(2-3), 182-192. https://doi.org/10.1007/s00203-004-0696-y
  20. Paredes-Sabja, D., Setlow, P., & Sarker, M. R. (2011). Germination of spores of Bacillales and Clostridiales species: mechanisms and proteins involved. Trends in Microbiology, 19(2), 85-94. https://doi.org/10.1016/j.tim.2010.10.004
  21. Sato, N., Higa, T., Shoya, M., & Sugita, S. (2003). Some Properties of Concrete mixed with Effective Microorganisms and the On-Site Investigation of the Completed Structures. 28th Conference on Our World in Concrete & Structures: 28-29 August 2003, Singapore, 483-490.
  22. Servin, J. A., Herbold, C. W., Skophammer, R. G., & Lake, J. A. (2008). Evidence excluding the root of the tree of life from the actinobacteria. Molecular Biology and Evolution, 25(1), 1-4. https://doi.org/10.1093/molbev/msm249
  23. Shim, S. M., & Lee, J. H. (2008). Evaluation of lactic acid bacterial community in kimchi using terminal-restriction fragment length polymorphism analysis. Korean Society for Microbiology and Biotechnology, 36(4), 247-259.
  24. Stackebrandt, E., Rainey, F. A., & Ward-Rainey, N. L. (1997). Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. International Journal of Systematic Bacteriology, 47(2), 479-491. https://doi.org/10.1099/00207713-47-2-479
  25. Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & Sinderen, D. V. (2007). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology and Molecular Biology Reviews, 71(3), 495-548. https://doi.org/10.1128/MMBR.00005-07
  26. Vollertsen, J., Nielsen, A. H., Jensen, H. S., Wium-Andersen, T., Hvitved-Jacobsen, T. (2008). Corrosion of concrete sewers the kinetics of hydrogen sulfide oxidation. Science of the Total Environment, 394(1), 162-170. https://doi.org/10.1016/j.scitotenv.2008.01.028
  27. Woo, P. C., Lau, S. K., Teng, J. L., Tse, H., & Yuen, K. Y. (2008). Then and now : use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clinical Microbiology and Infection, 14(10), 908-934. (Received Sep. 8 2015 Revised Nov. 4 2015 Accepted Dec. 9 2015) https://doi.org/10.1111/j.1469-0691.2008.02070.x