References
- Abeles, F.B., Bosshart, R.P., Forrence, L.E. and Habig, W.H. 1971. Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol. 47:129-34. https://doi.org/10.1104/pp.47.1.129
- Adhi, T.P., Korus, R.A. and Crawford, D.L. 1989. Production of major extracellular enzymes during lignocellulose degradation by two Streptomycetes in agitated submerged culture. Appl. Environ. Microbiol. 55:1165-1168.
- Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12:39-45. https://doi.org/10.1007/BF00369386
- Alnahdi, H.S. 2012. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. App. Pharm. Sci. 2:071-074.
- Anitha, A. and Rabeeth, M. 2010. Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. Afr. J. Plant Sci. 4:61-66.
- Ariffin, H., Abdullah, N., Umi Kalsom, M.S., Shirai, Y. and Hassan, M.A. 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 3:47-53.
- Berdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. 58:1-26. https://doi.org/10.1038/ja.2005.1
- Beard, J.B. 1973. Turfgrass: Science and Culture. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA. p. 658.
- Boller, T., Gehri, A., Mauch, F. and Vogeli, U. 1983. Chitinase in bean leaves: Induction by ethylene, purification, properties and possible functions. Planta. 157:22-31. https://doi.org/10.1007/BF00394536
- Buysens, S., Heungens, K., Poppe, J. and Hofte, M. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62:865-871.
- Cao, L., Qiu, Z.D.X., Tan, H., Lin, Y. and Zhou, S. 2004. Isolation of endophytic actinobacteria from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20:501-504. https://doi.org/10.1023/B:WIBI.0000040406.30495.48
- Chamberlain, K. and Crawford, D.L. 2000. Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can. J. Microbiol. 46:550-558. https://doi.org/10.1139/w00-025
- Crawford, D.L. 1978. Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35:1041-1045.
- Danaei, M., Baghizadeh, A., Pourseyedi, S., Amini, J. and Yaghoobi, M.M. 2014. Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Euro. J. Exp. Bio. 4:334-339.
- Datta, K., Shiha, S. and Chattopadhyay, P. 2000. Reactive oxygen species in health and disease. Natl. Med. J. India. 13:304-310.
- Du, W.X., Olsen, C.W., Avena-Bustillos, R.J., McHugh, T.H., Levin, C.E., et al. 2008. Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrolcontaining edible tomato films. J. Food Sci. 73:378-383.
- Errakhi, R., Bouteau, F., Lebrihi, A. and Barakate, M. 2007. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23:1503-1509. https://doi.org/10.1007/s11274-007-9394-7
- Fernando, W.G.D., Ramarathnama, R., Krishnamoorthyb, A.S. and Savchuka, S.C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955-964. https://doi.org/10.1016/j.soilbio.2004.10.021
- Fravel, D.R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-59. https://doi.org/10.1146/annurev.phyto.43.032904.092924
- Gupta, R., Saxena, R.K., Chaturvedi, P. and Virdi, J.S. 1995. Chitinase production by Streptomyces viridificans: its potential in cell wall lysis. J. Appl. Bacteriol. 78:378-383 https://doi.org/10.1111/j.1365-2672.1995.tb03421.x
- Glick, B.R., Patten, C.L., Holguin, G. and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press. London, UK.
- Gerber, N.N. and Lechevalier, H.A. 1965. Geosmin, an earthlysmelling substance isolated from actinomycetes. Appl. Microbiol. 13:935-8.
- Hamdan, H., Weller, D. and Thomashow, L. 1991. Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol. 57:3270-3277.
- Hayakawa, M. and Nomura, S. 1987. Humic acid-vitamin agar. A new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65:501-509. https://doi.org/10.1016/0385-6380(87)90108-7
- Hayakawa, M., Yoshida, Y. and Iimura, Y. 2004. Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J. Appl. Microbiol. 96:973-81. https://doi.org/10.1111/j.1365-2672.2004.02230.x
- Hirsch, C.F. and Christensen, D.L. 1983. Novel method for selective isolation of Actinomycetes. Appl. Environ. Microbiol. 46:925-929.
- James, P.D.A., Iqbal, M., Edwards, C. and Miller, P.G.G. 1991. Extra cellular protease activity in protease activity in antibiotic producing Streptomyces thermovioleceus. Curr. Microbial. 22:377-382. https://doi.org/10.1007/BF02092158
- Jayasree, D., Sandhya Kumari, T.D., Kavi Kishor, P.B., Vijaya Lakshmi, M. and Lakshmi Narasu, M. 2010. Optimization of production protocol of alkaline protease by Streptomyces pulvereceus. Indian J. Pharm. Sci. 72:161-166. https://doi.org/10.4103/0250-474X.65017
- Kucuk, C. and Kivanc, M. 2004. In vitro antifungal activity of strains of Trichoderma harzianum. Turk. J. Biol. 28:111-115.
- Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., et al. 2010. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol. Technol. 58:157-165. https://doi.org/10.1016/j.postharvbio.2010.06.003
- Loper, J.E. and Henkels, M.D. 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:5357-5363.
- Martin, S.B. and Dale, J.L. 1980. Biodegradation of turf thatch with wood-decay fungi. Phytopathol. 70:297-301. https://doi.org/10.1094/Phyto-70-297
- McLoughlin, T., Quinn, J., Bettermann, A. and Bookland, R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58:1760-1763.
- Nawani, N.N., Kapadnis, B.P., Das, A.D., Rao, A.S. and Mahajan, S.K. 2002. Purification and characterization of a thermophilic and acidophilicchitinase from Microbispora sp. V2. J. Appl. Microbiol. 93:965-75. https://doi.org/10.1046/j.1365-2672.2002.01766.x
- Pichersky, E., Noel, J.P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Sci. 311:808-811. https://doi.org/10.1126/science.1118510
- Sanglier, J.J., Haag, H., Huck, T.A. and Fehr, T. 1993. "Novel bioactive compounds from actinomycetes: a short review (1988-1992)," Research in Microbiology, vol. 144, no. 8, pp. 633-642. https://doi.org/10.1016/0923-2508(93)90066-B
- Sandhya, C., Adapa, L.K., Nampoothiri, K.M., Binod, P., Szakacs, G., et al. 2004. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J. Basic Microbiol. 44:49-58. https://doi.org/10.1002/jobm.200310284
- Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61:559-562. https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
- Scholler, C.E.G., Gurtler, H., Pedersen, R., Molin, S. and Wilkins, K. 2002. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50:2615-2621. https://doi.org/10.1021/jf0116754
- Schwyn, B. and Neilands, J.B. 1987. Universal CAS assay for the detection and determination of siderophores. Anal. Biochem. 160:47-60. https://doi.org/10.1016/0003-2697(87)90612-9
- Seuk, C., Paulita, T. and Baker, R. 1988. Attributes associate with increased biocontrol activity of fluorescent Pseudomonads. J. Plant Pathol. 4:218-225.
- Shirai, K. 2006. Fungal chitinases. pp. 289-304. In: Guevara-Gonzalez, R.G. and Torres-Pacheco, I. (Eds.). Advances in agricultural and food biotechnology. Kerala: Research Signpost.
- Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M., et al. 1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl. Environ. Microbiol. 65:5338-5344.
- Turgeon, A.J., Hurto, K.A. and Spome, L.A. 1977. Thatch as a turfgrass growing medium. Illinois Res. 19:3-4.
- Wan, M., Li, G., Zhang, J., Jiang, D. and Huang, H.C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control. 46:552-559. https://doi.org/10.1016/j.biocontrol.2008.05.015
Cited by
- Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi vol.7, pp.7, 2017, https://doi.org/10.1098/rsob.170075
- Biological Control of Large Patch Disease by Streptomyces spp. in Turfgrass vol.5, pp.1, 2016, https://doi.org/10.5660/WTS.2016.5.1.29
- Selection of Biocontrol Agent of Tomato Gray Mold Disease from Flower and Pollinator Hive vol.21, pp.1, 2017, https://doi.org/10.7585/kjps.2017.21.1.90