DOI QR코드

DOI QR Code

Physiological Characteristics of Actinomycetes Isolated from Turfgrass Rhizosphere

잔디 근권에서 분리된 Actinomycetes균주의 생리학적 특성

  • Lee, Jung Han (Korea Turfgrass Research Institute) ;
  • Min, Gyu Young (Daejung Golf Engineering Co. Ltd.) ;
  • Shim, Gyu Yul (Korea Turfgrass Research Institute) ;
  • Jeon, Chang Wook (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University) ;
  • Kwak, Youn-Sig (Department of Plant Medicine and Institute of Agriculture & Life Science, Gyeongsang National University)
  • Received : 2015.09.07
  • Accepted : 2015.11.02
  • Published : 2015.12.30

Abstract

Total 443 isolates of actinomycetes were isolated from turfgrass rhizosphere as potential biological control agents. The two isolates (S11 and S4) showed highest cellulase activity with compared to the other isolates that exhibited a clear zone of 1.2 mm around the colony on cellulose agar medium. S12 strain appeared the most active chitin degrading, which exhibited a 1.2 mm of clear zone. The highest proteolytic activity on skim milk agar was which exhibited a 7.5 mm of clear zone by S2 strain. S1 strain from the soli showed siderophore production ability, which exhibited a 0.6 mm of large clear zone on chrome azurol S agar. The antifungal activity of the volatile compound producing by 4 selected actinomycetes was investigated that inhibition rate against Rhizoctonia solani AG2-2 and Sclerotinia homoeocarpa. Growth inhibition effect of S8 isolate against S. homoeocarpa was appeared to 94.8%, S2 to 76.9%, S5 to 46.1% and S12 to 43.5%. The significant inhibition effects on mycelial growth of S. homoeocarpa were shown on media with four strains. The inhibition effect was the highest with S8 strain treatment at 94.8%.

방선균을 대상으로 생물적 방제 균주를 선발한 결과 총 248개의 균주가 분리되었다. 분리된 균주의 셀룰로스 분해능력은 S11 균주와 S4 균주의 투명환의 크기는 약 1.2mm로 셀룰로스 분해 능력이 가장 좋은 것으로 나타났다. 키틴분해 능력을 검정한 결과 S12 균주의 투명환의 크기가 2.1mm로 가장 키틴분해 능력이 우수한 것으로 나타났다. Skim milk agar 배지를 이용하여 15개 균주의 단백질 분해 능력을 검정한 결과 S2 균주가 접종된 배지의 투명환의 크기가 7.5mm로 단백질 분해 능력 가장 우수한 것으로 나타났다. Chrome azurol S agar 배지를 이용하여 병원균에 대한 중요한 항균 기작으로 알려져 있는 siderophore 생성정도를 조사한 결과 S1 균주의 투명환의 크기가 0.6mm으로 가장 높게 나타났다. 선발된 4개 균주가 분비하는 휘발성 물질의 달라스팟과 라지패취 병원균에 대한 항균활성 능력 검정한 결과 달라스팟의 경우 S8 균주가 94.8% 억제하는 것으로 나타났다. Rhizoctonia solani AG2-2균사생장에 미치는 영향은 S8 균주가 72.9%로 가장 높게 억제하였으며 다음으로 S2 균주가 62.1%로 S5 균주가 37.8%로 S12 균주가 27% 억제하는 것으로 나타났다.

Keywords

References

  1. Abeles, F.B., Bosshart, R.P., Forrence, L.E. and Habig, W.H. 1971. Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol. 47:129-34. https://doi.org/10.1104/pp.47.1.129
  2. Adhi, T.P., Korus, R.A. and Crawford, D.L. 1989. Production of major extracellular enzymes during lignocellulose degradation by two Streptomycetes in agitated submerged culture. Appl. Environ. Microbiol. 55:1165-1168.
  3. Alexander, D.B. and Zuberer, D.A. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soils. 12:39-45. https://doi.org/10.1007/BF00369386
  4. Alnahdi, H.S. 2012. Isolation and screening of extracellular proteases produced by new isolated Bacillus sp. J. App. Pharm. Sci. 2:071-074.
  5. Anitha, A. and Rabeeth, M. 2010. Degradation of fungal cell walls of phytopathogenic fungi by lytic enzyme of Streptomyces griseus. Afr. J. Plant Sci. 4:61-66.
  6. Ariffin, H., Abdullah, N., Umi Kalsom, M.S., Shirai, Y. and Hassan, M.A. 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. Int. J. Eng. Technol. 3:47-53.
  7. Berdy, J. 2005. Bioactive microbial metabolites: A personal view. J. Antibiot. 58:1-26. https://doi.org/10.1038/ja.2005.1
  8. Beard, J.B. 1973. Turfgrass: Science and Culture. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA. p. 658.
  9. Boller, T., Gehri, A., Mauch, F. and Vogeli, U. 1983. Chitinase in bean leaves: Induction by ethylene, purification, properties and possible functions. Planta. 157:22-31. https://doi.org/10.1007/BF00394536
  10. Buysens, S., Heungens, K., Poppe, J. and Hofte, M. 1996. Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl. Environ. Microbiol. 62:865-871.
  11. Cao, L., Qiu, Z.D.X., Tan, H., Lin, Y. and Zhou, S. 2004. Isolation of endophytic actinobacteria from roots and leaves of banana (Musa acuminata) plants and their activities against Fusarium oxysporum f. sp. cubense. World J. Microbiol. Biotechnol. 20:501-504. https://doi.org/10.1023/B:WIBI.0000040406.30495.48
  12. Chamberlain, K. and Crawford, D.L. 2000. Thatch biodegradation and antifungal activities of two lignocellulolytic Streptomyces strains in laboratory cultures and in golf green turfgrass. Can. J. Microbiol. 46:550-558. https://doi.org/10.1139/w00-025
  13. Crawford, D.L. 1978. Lignocellulose decomposition by selected Streptomyces strains. Appl. Environ. Microbiol. 35:1041-1045.
  14. Danaei, M., Baghizadeh, A., Pourseyedi, S., Amini, J. and Yaghoobi, M.M. 2014. Biological control of plant fungal diseases using volatile substances of Streptomyces griseus. Euro. J. Exp. Bio. 4:334-339.
  15. Datta, K., Shiha, S. and Chattopadhyay, P. 2000. Reactive oxygen species in health and disease. Natl. Med. J. India. 13:304-310.
  16. Du, W.X., Olsen, C.W., Avena-Bustillos, R.J., McHugh, T.H., Levin, C.E., et al. 2008. Antibacterial activity against E. coli O157:H7, physical properties, and storage stability of novel carvacrolcontaining edible tomato films. J. Food Sci. 73:378-383.
  17. Errakhi, R., Bouteau, F., Lebrihi, A. and Barakate, M. 2007. Evidences of biological control capacities of Streptomyces spp. against Sclerotium rolfsii responsible for damping-off disease in sugar beet (Beta vulgaris L.). World J. Microbiol. Biotechnol. 23:1503-1509. https://doi.org/10.1007/s11274-007-9394-7
  18. Fernando, W.G.D., Ramarathnama, R., Krishnamoorthyb, A.S. and Savchuka, S.C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955-964. https://doi.org/10.1016/j.soilbio.2004.10.021
  19. Fravel, D.R. 2005. Commercialization and implementation of biocontrol. Annu. Rev. Phytopathol. 43:337-59. https://doi.org/10.1146/annurev.phyto.43.032904.092924
  20. Gupta, R., Saxena, R.K., Chaturvedi, P. and Virdi, J.S. 1995. Chitinase production by Streptomyces viridificans: its potential in cell wall lysis. J. Appl. Bacteriol. 78:378-383 https://doi.org/10.1111/j.1365-2672.1995.tb03421.x
  21. Glick, B.R., Patten, C.L., Holguin, G. and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press. London, UK.
  22. Gerber, N.N. and Lechevalier, H.A. 1965. Geosmin, an earthlysmelling substance isolated from actinomycetes. Appl. Microbiol. 13:935-8.
  23. Hamdan, H., Weller, D. and Thomashow, L. 1991. Relative importance of fluorescens siderophores and other factors in biological control of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens 2-79 and M4-80R. Appl. Environ. Microbiol. 57:3270-3277.
  24. Hayakawa, M. and Nomura, S. 1987. Humic acid-vitamin agar. A new medium for the selective isolation of soil actinomycetes. J. Ferment. Technol. 65:501-509. https://doi.org/10.1016/0385-6380(87)90108-7
  25. Hayakawa, M., Yoshida, Y. and Iimura, Y. 2004. Selective isolation of bioactive soil actinomycetes belonging to the Streptomyces violaceusniger phenotypic cluster. J. Appl. Microbiol. 96:973-81. https://doi.org/10.1111/j.1365-2672.2004.02230.x
  26. Hirsch, C.F. and Christensen, D.L. 1983. Novel method for selective isolation of Actinomycetes. Appl. Environ. Microbiol. 46:925-929.
  27. James, P.D.A., Iqbal, M., Edwards, C. and Miller, P.G.G. 1991. Extra cellular protease activity in protease activity in antibiotic producing Streptomyces thermovioleceus. Curr. Microbial. 22:377-382. https://doi.org/10.1007/BF02092158
  28. Jayasree, D., Sandhya Kumari, T.D., Kavi Kishor, P.B., Vijaya Lakshmi, M. and Lakshmi Narasu, M. 2010. Optimization of production protocol of alkaline protease by Streptomyces pulvereceus. Indian J. Pharm. Sci. 72:161-166. https://doi.org/10.4103/0250-474X.65017
  29. Kucuk, C. and Kivanc, M. 2004. In vitro antifungal activity of strains of Trichoderma harzianum. Turk. J. Biol. 28:111-115.
  30. Li, Q., Ning, P., Zheng, L., Huang, J., Li, G., et al. 2010. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol. Technol. 58:157-165. https://doi.org/10.1016/j.postharvbio.2010.06.003
  31. Loper, J.E. and Henkels, M.D. 1999. Utilization of heterologous siderophore enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl. Environ. Microbiol. 65:5357-5363.
  32. Martin, S.B. and Dale, J.L. 1980. Biodegradation of turf thatch with wood-decay fungi. Phytopathol. 70:297-301. https://doi.org/10.1094/Phyto-70-297
  33. McLoughlin, T., Quinn, J., Bettermann, A. and Bookland, R. 1992. Pseudomonas cepacia suppression of sunflower wilt fungus and role of antifungal compounds in controlling the disease. Appl. Environ. Microbiol. 58:1760-1763.
  34. Nawani, N.N., Kapadnis, B.P., Das, A.D., Rao, A.S. and Mahajan, S.K. 2002. Purification and characterization of a thermophilic and acidophilicchitinase from Microbispora sp. V2. J. Appl. Microbiol. 93:965-75. https://doi.org/10.1046/j.1365-2672.2002.01766.x
  35. Pichersky, E., Noel, J.P. and Dudareva, N. 2006. Biosynthesis of plant volatiles: nature's diversity and ingenuity. Sci. 311:808-811. https://doi.org/10.1126/science.1118510
  36. Sanglier, J.J., Haag, H., Huck, T.A. and Fehr, T. 1993. "Novel bioactive compounds from actinomycetes: a short review (1988-1992)," Research in Microbiology, vol. 144, no. 8, pp. 633-642. https://doi.org/10.1016/0923-2508(93)90066-B
  37. Sandhya, C., Adapa, L.K., Nampoothiri, K.M., Binod, P., Szakacs, G., et al. 2004. Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. J. Basic Microbiol. 44:49-58. https://doi.org/10.1002/jobm.200310284
  38. Sazci, A., Erenler, K. and Radford, A. 1986. Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method. J. Appl. Bacteriol. 61:559-562. https://doi.org/10.1111/j.1365-2672.1986.tb01729.x
  39. Scholler, C.E.G., Gurtler, H., Pedersen, R., Molin, S. and Wilkins, K. 2002. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50:2615-2621. https://doi.org/10.1021/jf0116754
  40. Schwyn, B. and Neilands, J.B. 1987. Universal CAS assay for the detection and determination of siderophores. Anal. Biochem. 160:47-60. https://doi.org/10.1016/0003-2697(87)90612-9
  41. Seuk, C., Paulita, T. and Baker, R. 1988. Attributes associate with increased biocontrol activity of fluorescent Pseudomonads. J. Plant Pathol. 4:218-225.
  42. Shirai, K. 2006. Fungal chitinases. pp. 289-304. In: Guevara-Gonzalez, R.G. and Torres-Pacheco, I. (Eds.). Advances in agricultural and food biotechnology. Kerala: Research Signpost.
  43. Tanaka, T., Fujiwara, S., Nishikori, S., Fukui, T., Takagi, M., et al. 1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl. Environ. Microbiol. 65:5338-5344.
  44. Turgeon, A.J., Hurto, K.A. and Spome, L.A. 1977. Thatch as a turfgrass growing medium. Illinois Res. 19:3-4.
  45. Wan, M., Li, G., Zhang, J., Jiang, D. and Huang, H.C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control. 46:552-559. https://doi.org/10.1016/j.biocontrol.2008.05.015

Cited by

  1. Caryolan-1-ol, an antifungal volatile produced by Streptomyces spp., inhibits the endomembrane system of fungi vol.7, pp.7, 2017, https://doi.org/10.1098/rsob.170075
  2. Biological Control of Large Patch Disease by Streptomyces spp. in Turfgrass vol.5, pp.1, 2016, https://doi.org/10.5660/WTS.2016.5.1.29
  3. Selection of Biocontrol Agent of Tomato Gray Mold Disease from Flower and Pollinator Hive vol.21, pp.1, 2017, https://doi.org/10.7585/kjps.2017.21.1.90