DOI QR코드

DOI QR Code

Per-deuteration and NMR experiments for the backbone assignment of 62 kDa protein, Hsp31

  • Kim, Jihong (Protein Structure Group, Korea Basic Science Institute) ;
  • Choi, Dongwook (Protein Structure Group, Korea Basic Science Institute) ;
  • Park, Chankyu (Department of Biological Science, Korea Advanced Institute of Science and Technology) ;
  • Ryu, Kyoung-Seok (Protein Structure Group, Korea Basic Science Institute)
  • Received : 2015.10.07
  • Accepted : 2015.11.29
  • Published : 2015.12.20

Abstract

Hsp31 protein is one of the members of DJ-1 superfamily proteins and has a dimeric structure of which molecular weight (MW) is 62 kDa. The mutation of DJ-1 is closely related to early onset of Parkinson's disease. Hsp31 displays $Zn^{+2}$-binding activity and was first reported to be a holding chaperone in E. coli. Its additional glyoxalase III active has recently been characterized. Moreover, an incubation at $60^{\circ}C$ induces Hsp31 protein to form a high MW oligomer (HMW) in vitro, which accomplishes an elevated holding chaperone activity. The NMR technique is elegant method to probe any local or global structural change of a protein in responses to environmental stresses (heat, pH, and metal). Although the presence of the backbone chemical shifts (bbCSs) is a prerequisite for detailed NMR analyses of the structural changes, general HSQC-based triple resonance experiments could not be used for 62 kDa Hsp31 protein. Here, we prepared the per-deuterated Hsp31 and performed the TROSY-based triple resonance experiments for the bbCSs assignment. Here, detailed processes of per-deuteration and the NMR experiments are described for other similar NMR approaches.

Keywords

References

  1. B. D. Eisenhardt, Biomol. Concepts 4, 583 (2013)
  2. K. Niforou, C. Cheimonidou, and I.P. Trougakos, Redox Biol. 2, 323 (2014) https://doi.org/10.1016/j.redox.2014.01.017
  3. M. Mujacic, M. W. Bader, and F. Baneyx, Mol. Microbiol. 51, 849 (2004)
  4. M. Mujacic, and F. Baneyx, Mol. Microbiol. 60, 1576 (2006) https://doi.org/10.1111/j.1365-2958.2006.05207.x
  5. A. Battesti, N. Majdalani, and S. Gottesman, Annu. Rev. Microbiol. 65, 189 (2011) https://doi.org/10.1146/annurev-micro-090110-102946
  6. M. Mujacic, and F. Baneyx, Appl. Environ. Microbiol. 73, 1014 (2007) https://doi.org/10.1128/AEM.02429-06
  7. Y. Wei, D. Ringe, M. A. Wilson, and M. J. Ondrechen, PLoS Comput. Biol. 3, e10 (2007) https://doi.org/10.1371/journal.pcbi.0030010
  8. P. M. Quigley, K. Korotkov, F. Baneyx, and W. G. Hol, Proc. Natl. Acad. Sci.U.S.A. 100, 3137 (2003) https://doi.org/10.1073/pnas.0530312100
  9. D. Choi, J. Kim, S. Ha, K. Kwon, E. H. Kim, H. Y. Lee, K. S. Ryu, and C. Park, FEBS J. 281, 5447 (2014) https://doi.org/10.1111/febs.13085
  10. K. C. Giese, and E. Vierling, J. Biol. Chem. 277, 46310 (2002) https://doi.org/10.1074/jbc.M208926200
  11. E. Hilario, F. J. Martin, M. C. Bertolini, and L. Fan, J. Mol. Biol. 408, 74 (2011) https://doi.org/10.1016/j.jmb.2011.02.004
  12. D. Choi, K. S. Ryu, and C. Park, Biochim. Biophys. Acta. 1834, 621 (2013) https://doi.org/10.1016/j.bbapap.2012.11.006
  13. K. Bankapalli, S. Saladi, S. S. Awadia, A. V. Goswami, M. Samaddar, and P. D'Silva, J. Biol. Chem. 290, 26491 (2015) https://doi.org/10.1074/jbc.M115.673624
  14. K. P. Subedi, D. Choi, I. Kim, B. Min, and C. Park, Mol. Microbiol. 81, 926 (2011) https://doi.org/10.1111/j.1365-2958.2011.07736.x
  15. Y. Zhao, D. Liu, W. D. Kaluarachchi, H. D. Bellamy, M. A. White, and R. O. Fox, Protein Sci. 12, 2303 (2003)
  16. A. Biswas, and K. P. Das, Biochemistry 47, 804 (2008) https://doi.org/10.1021/bi7011965
  17. H. Kim, I. Lee, J. Han, H. K. Cheong, E. H. Kim, and W. Lee, J. Kor. Mag. Reson. Soc. 19, 83 (2015) https://doi.org/10.6564/JKMRS.2015.19.2.083
  18. J. Fiaux, E. B. Bertelsen, A. L. Horwich, and K. Wuthrich, J. Biomol. NMR. 29, 289 (2004) https://doi.org/10.1023/B:JNMR.0000032523.00554.38
  19. V. Tugarinov, V. Kanelis, and L. E. Kay, Nat. Protoc. 1, 749 (2006) https://doi.org/10.1038/nprot.2006.101
  20. M. Jansson, Y. C. Li, L. Jendeberg, S. Anderson, G. T. Montelione, and B. Nilsson, J. Biomol. NMR. 7, 131 (1996)
  21. F. W. Studier, Protein Expr. Purif. 41, 207 (2005) https://doi.org/10.1016/j.pep.2005.01.016
  22. F. Delaglio, S. Grzesiek, G. W. Vuister, G. Zhu, J. Pfeifer, and A. Bax, J. Biomol. NMR. 6, 277 (1995)
  23. T. D. Goddard and D. G. Kneller, Sparky 3, University of California, SanFransisco, CA.
  24. S. C. Andrews, A. K. Robinson, and F. Rodriguez-Quinones, FEMS Microbiol. Rev. 27, 215 (2003) https://doi.org/10.1016/S0168-6445(03)00055-X
  25. S. Banerjee, S. Paul, L. T. Nguyen, B. C. Chu, and H. J. Vogel, Metallomics (2016)
  26. K. O. Lee, and J. Y. Suh, J. Kor. Mag. Reson. Soc. 19, 42 (2015) https://doi.org/10.6564/JKMRS.2015.19.1.042
  27. H. N. Moseley, D. Monleon, and G. T. Montelione, Methods Enzymol. 339, 91 (2001) https://doi.org/10.1016/S0076-6879(01)39311-4
  28. A. Bahrami, A. H. Assadi, J. L. Markley, and H. R. Eghbalnia, PLoS Comput. Biol. 5, e1000307 (2009) https://doi.org/10.1371/journal.pcbi.1000307
  29. C. A. MacRaild, and R. S. Norton, J. Biomol. NMR. 58, 155 (2014) https://doi.org/10.1007/s10858-014-9813-7
  30. Y. Shen, and A. Bax, J. Biomol. NMR. 48, 13 (2010) https://doi.org/10.1007/s10858-010-9433-9
  31. B. Han, Y. Liu, S. W. Ginzinger, and D. S. Wishart, J. Biomol. NMR. 50, 43 (2011) https://doi.org/10.1007/s10858-011-9478-4
  32. Y. S. Choi, E. H. Kim, and K. S. Ryu, J. Anal. Sci. Technol. 6, 1 (2015) https://doi.org/10.1186/s40543-014-0041-2

Cited by

  1. Backbone resonance assignments of the Escherichia coli 62 kDa protein, Hsp31 vol.11, pp.2, 2017, https://doi.org/10.1007/s12104-017-9739-6