DOI QR코드

DOI QR Code

반도체 제조 가상계측 공정변수를 이용한 웨이퍼 수율 예측

A Prediction of Wafer Yield Using Product Fabrication Virtual Metrology Process Parameters in Semiconductor Manufacturing

  • 남완식 (고려대학교 산업경영공학과) ;
  • 김성범 (고려대학교 산업경영공학과)
  • Nam, Wan Sik (Department of Industrial Management Engineering, Korea University) ;
  • Kim, Seoung Bum (Department of Industrial Management Engineering, Korea University)
  • 투고 : 2015.02.09
  • 심사 : 2015.06.16
  • 발행 : 2015.12.15

초록

Yield prediction is one of the most important issues in semiconductor manufacturing. Especially, for a fast-changing environment of the semiconductor industry, accurate and reliable prediction techniques are required. In this study, we propose a prediction model to predict wafer yield based on virtual metrology process parameters in semiconductor manufacturing. The proposed prediction model addresses imbalance problems frequently encountered in semiconductor processes so as to construct reliable prediction model. The effectiveness and applicability of the proposed procedure was demonstrated through a real data from a leading semiconductor industry in South Korea.

키워드

참고문헌

  1. An, D., Ko, H. H., Gulambar, T., Kim, J., Baek, J. G., and Kim, S. S. (2009), A semiconductor yields prediction using stepwise support vector machine, In Assembly and Manufacturing, ISAM 2009, IEEE International Symposium, 130-136.
  2. Baek, D. H. and Han, C. H. (2003), Application of data mining for improving and predicting yield in wafer fabrication system. KIISS, 9(1), 157-177.
  3. Breiman, L. (2001), Random forests. Machine learning, 45(1), 5-32. https://doi.org/10.1023/A:1010933404324
  4. Chandola, V., Banerjee, A., and Kumar, V. (2009), Anomaly detection : A survey. ACM computing surveys (CSUR), 41(3), 15.
  5. Chang, Y. J., Kang, Y., Hsu, C. L., Chang, C. T., and Chan, T. Y. (2006), Virtual metrology technique for semiconductor manufacturing, In Neural Networks, IJCNN 2006. International Joint Conference on, IEEE, 5289-5293.
  6. Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002), SMOTE : Synthetic Minority Over-sampling Technique. Journal of Artificial Intelligence Research, 16, 321-357. https://doi.org/10.1613/jair.953
  7. Chen, C., Liaw, A., and Breiman, L. (2004), Using random forest to learn imbalanced data, University of California, Berkeley.
  8. Chen, P., Wu, S., Lin, J., Ko, F., Lo, H., Wang, J., and Liang, M. (2005), Virtual metrology : a solution for wafer to wafer advanced process control, In Semiconductor Manufacturing, ISSM 2005, IEEE International Symposium, 155-157.
  9. Chen, Y.-T., Yang, H.-C., and Cheng, F.-T. (2006), Multivariate Simulation Assessment for Virtual Metrology, Proc. IEEE Int. Conf. on Robotics and Automation(ICRA 2006), 1048-1053.
  10. Chien, C. F., Wang, W. C., and Cheng, J. C. (2007), Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications, 33(1), 192-198. https://doi.org/10.1016/j.eswa.2006.04.014
  11. Cunningham, S. P., Spanos, C. J., and Voros, K. (1995), Semiconductor yield improvement: results and best practices. Semiconductor Manufacturing, IEEE Transactions on, 8(2), 103-109. https://doi.org/10.1109/66.382273
  12. Ferreira, A., Roussy, A., and Conde, L. (2009), Virtual metrology models for predicting physical measurement in semiconductor manufacturing, In Advanced Semiconductor Manufacturing Conference, ASMC 2009, IEEE/SEMI, 149-154.
  13. Hosmer, D. and Lemeshow, W. (1989), Applied Logistic Regression, Ed. John Wolfley and Sons, 8-20.
  14. Kang, P. and Cho, S. (2006), EUS SVM : Ensemble of under-sampled SVMs for data imbalance problems, Proceedings in Korean Industrial Engineering Conference, 291-298.
  15. Kang, P. and Cho, S. (2006), EUS SVMs : Ensemble of under-sampled SVMs for data imbalance problems, In Neural Information Processing, Springer Berlin Heidelberg, 837-846.
  16. Kang, P., Kim, D., Lee, H. J., Doh, S., and Cho, S. (2011), Virtual metrology for run-to-run control in semiconductor manufacturing. Expert Systems with Applications, 38(3), 2508-2522. https://doi.org/10.1016/j.eswa.2010.08.040
  17. Kang, P., Kim, D., Lee, S. K., Doh, S., and Cho, S. (2012), Estimating the reliability of virtual metrology predictions in semiconductor manufacturing : A novelty detection-based approach. Journal of the Korean Institue of Industrial Engineers, 38(1), 46-56. https://doi.org/10.7232/JKIIE.2012.38.1.046
  18. Kang, P., Lee, H. J., Cho, S., Kim, D., Park, J., Park, C. K., and Doh, S. (2009), A virtual metrology system for semiconductor manufacturing. Expert Systems with Applications, 36(10), 12554-12561. https://doi.org/10.1016/j.eswa.2009.05.053
  19. Khan, A. A., Moyne, J. R., and Tilbury, D. M. (2008), Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares. Journal of Process Control, 18(10), 961-974. https://doi.org/10.1016/j.jprocont.2008.04.014
  20. Kohavi, R. (1995), A study of cross-validation and bootstrap for accuracy estimation and model selection. In IJCAI, 14(2), 1137-1145.
  21. Kubat, M., Holte, R. C., and Matwin, S. (1998), Machine learning for the detection of oil spills in satellite radar images. Machine learning, 30(2/3), 195-215. https://doi.org/10.1023/A:1007452223027
  22. Kumar, N., Kennedy, K., Gildersleeve, K., Abelson, R., Mastrangelo, C. M., and Montgomery, D. C. (2006), A review of yield modelling techniques for semiconductor manufacturing. International Journal of Production Research, 44(23), 5019-5036. https://doi.org/10.1080/00207540600596874
  23. Li, T. S., Huang, C. L., and Wu, Z. Y. (2006), Data mining using genetic programming for construction of a semiconductor manufacturing yield rate prediction system. Journal of Intelligent Manufacturing, 17(3), 355-361. https://doi.org/10.1007/s10845-005-0008-7
  24. Liaw, A. and Wiener, M. (2002), Classification and Regression by randomForest. R news, 2(3), 18-22.
  25. Lynn, S., Ringwood, J., and MacGearailt, N. (2012), Global and local virtual metrology models for a plasma etch process, Semiconductor Manufacturing, IEEE Transactions, 25(1), 94-103. https://doi.org/10.1109/TSM.2011.2176759
  26. Murphy, B. T. (1964), Cost-size optima of monolithic integrated circuits. Proceedings of the IEEE, 52(12), 1537-1545. https://doi.org/10.1109/PROC.1964.3442
  27. Park, K. S., Jun, C. H., and Kim, S. Y. (1997), The comparison and use of yield models in semiconductor manufacturing. IE interfaces, 10(1), 79-93.
  28. Quinlan, J. R. (1986), Induction of decision trees. Machine learning, 1(1), 81-106. https://doi.org/10.1007/BF00116251
  29. Rosenblatt, F. (1958), The perceptron : a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386. https://doi.org/10.1037/h0042519
  30. Shin, C. K. and Park, S. C. (2000), A machine learning approach to yield management in semiconductor manufacturing. International Journal of Production Research, 38(17), 4261-4271. https://doi.org/10.1080/00207540050205073
  31. Uzsoy, R., Lee, C. Y., and Martin-Vega, L. A. (1992), A review of production planning and scheduling models in the semiconductor industry part I : system characteristics, performance evaluation and production planning. IIE Transactions, 24(4), 47-60. https://doi.org/10.1080/07408179208964233
  32. Vapnik, V. (2000), The Nature of Statistical Learning Theory, Springer.