Development of Hybrid AVR for Alternator

교류 발전기용 하이브리드 자동 전압 조정기 개발

  • Received : 2015.09.22
  • Accepted : 2015.11.08
  • Published : 2015.10.30

Abstract

An analog AVR has an advantage of short time constant, time to revert again from the abnormal state to a stable one depending on the voltage fluctuations of the load. But the Analog AVR has a disadvantage of large voltage variation according to the load fluctuation. Voltage regulation for digital AVR is very stable, but the time constant is very long compared to that of an analog AVR. Therefore, it indicates that the digital AVR shows unstable output performance in a very large load variations. In this paper, a mixed form of an analog AVR and a digital AVR is proposed. An implemented hybrid AVR has fast time constant and stable voltage regulation capability. Hybrid AVR voltage variations in the load is stable within 1[%] and the voltage stability is also improved. It also showed fast time constant to the level of the analog AVR. Thus hybrid AVR developed in this paper can be used as a power supply for a variety of uses in industry.

아날로그 AVR은 부하의 변동에 따라 전압이 비정상상태가 되었다가 다시 정상상태로 돌아가는데 걸리는 시간이 빠른 장점이 있다. 하지만 아날로그 AVR은 부하 변동에 따른 전압변동이 크다는 문제가 있다. 디지털 AVR의 전압변동률은 매우 안정적이지만, 불안정상태에서 안정한 정상상태로 회복하는데 걸리는 시간인 시정수가 아날로그 AVR에 비해 매우 길다. 따라서 부하변동이 매우 큰 상황에서 불안정한 출력성능을 나타낸다. 본 논문에서는 두 AVR의 혼합된 형태를 가지며 빠른 시정수와 안정된 전압조정 능력을 갖는 하이브리드 AVR을 제안한다. 개발된 하이브리드 AVR의 경우 부하에 따른 전압 변동이 1[%] 이내로 안정적이며, 전압 안정률도 개선되었다. 또한 아날로그 AVR 수준의 빠른 시정수를 나타내었다. 따라서 본 연구를 통해서 개발된 하이브리드 AVR은 산업현장에서 다양한 용도의 전원공급장치로 활용될 수 있다.

Keywords

References

  1. Andrzej M. Trznhadlowski, Introduction to Modern Power Electronics, Wiley.
  2. Kentaro Kawabata, Yuzo Okubo, Nobukazu Iijima, Mototaka Sone, Akinobu Mizutani, "The Automatic Tuning Function for Digital AVR of an Electric Power Generator", Proceedings of the International Conference on Signal Processing Applications & Technology, vol 2, pp. 937-941, Sep. 1998.
  3. Dong-Hwan Yu, Sang-Hoon Park, Jae-Sung Yo, Sang-Seuk Lee, Sung-Joon Ahn, "Voltage Control of Synchronous Generator for Ships using a PMG Type Digital Automatic Voltage", KIPE, vol. 14, No. 1, pp. 38-45, 2009.
  4. Ibraheem Kasim Ibraheem, "A Digital Optimal AVR Design of Synchronous Generator Exciter Using LQR Technique", Al-Khwarizm Engineering Journal, vol. 7, No. 1, pp. 82-94, 2011.
  5. Anderson, P. M. abd Fouad A. A., "Power System Control and Stability", John Wiley and Sons Inc., 2003.
  6. Rangnekar S., "Development of state-Space and Study of Performance Characteristics of Digital Based Excitation Control System ST4B with Single Machine Connected to Infinite Bus", IEEE International Conference on Control Applications, Hohala Coast Island of Hawaii, Hawaii, USA, August, 1999.
  7. A. Godhwani and M. J. Basler, "Design, Test and Simulation Results of a Var/Power Factor Controller Implemented in a Modern Digital Excitation System", IEEE Power Eng. Society Summer Meeting, SanDiego, CA, 1998.
  8. A. Godhwani, M. J. Basler and T. W. Eberly, "Commissioning and Operational Experience with a Modern Digital Excition system", IEEE Trans. Energy Conversion, Vol. 12, June, 1998.
  9. Dong-Hee Lee, Tae-Hyoung Kim and Jin-Woo Ahn, "Control of Digital AVR in Stand Alone Generator for Improved Dynamic Characteristics", IEEE pp. 1978-1982, 2008.
  10. Asama, M., Ukai, H., Sone, M., Nakamura, K, "Comparative studies of digital AVR for use on engine generator between H/sub/spl infinite control and direct design PID control", Proceedings of the Power Conversion Conference - OSAKA, vol. 1, pp. 211-214, April 2002.