DOI QR코드

DOI QR Code

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle

작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석

  • Kim, Jun-Seong (Department of Marine System Engineering, Graduate School of Korea Maritime and Ocean University) ;
  • Kim, Do-Yeop (Nuclear Power Equipment Research Center, Korea Maritime and Ocean University) ;
  • Kim, You-Taek (Division of Marine System Engineering, Korea Maritime and Ocean University) ;
  • Kang, Ho-Keun (Division of Marine System Engineering, Korea Maritime and Ocean University)
  • Received : 2015.09.25
  • Accepted : 2015.11.27
  • Published : 2015.11.30

Abstract

Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.

해양온도차발전은 해양의 표층수와 심층수의 온도차를 이용하여 발전하는 유기랭킨사이클이다. 작동유체와 사이클 구성은 유기랭킨사이클의 열역학적 효율에 큰 영향을 미치는 요소이다. 본 연구에서는 작동유체와 사이클에 따른 해양온도차발전시스템의 성능분석을 수행하였다. 고전적인 단순 랭킨사이클과 단순 랭킨사이클의 대안으로 제시되고 있는 개방형 및 통합형 재생 랭킨사이클 그리고 칼리나 사이클이 본 연구에서 고려되었으며, 작동유체로는 9종의 단일냉매와 3종의 혼합냉매를 본 연구에 적용하였다. 사이클의 성능분석에는 핀치포인트온도차를 일정하게 유지하는 핀치포인트분석이 적용되었다. 성능분석결과를 살펴보면, 단순 랭킨사이클과 개방형 및 통합형 재생 랭킨사이클의 경우 RE245fa2를 작동유체로 사용하며, 칼리나 사이클의 경우 $NH_3/H_2O$의 질량비가 0.9:0.1일 때 열역학적 효율이 가장 높았다. 한편, 개방형 및 통합형 재생 랭킨사이클과 칼리나 사이클을 해양온도차발전시스템에 적용할 경우 단순 랭킨사이클과 비교하여 각각 약 2.0 %, 1.0%, 10.0%의 효율 향상을 기대할 수 있었다.

Keywords

References

  1. B. F. Tchanche, M. Petrissans, and G. Papadakis, "Heat resources and organic Rankine cycle machines", Journal of the Renewable and Sustainable Energy Reviews, vol. 39, pp. 1185-1199, 2014. https://doi.org/10.1016/j.rser.2014.07.139
  2. M. H. Yang and R. H. Yeh, "Analysis of optimization in an OTEC plant using organic Rankine cycle", Journal of the Renewable Energy, vol. 68, pp. 25-34, 2014. https://doi.org/10.1016/j.renene.2014.01.029
  3. L. A. Vega, "Ocean thermal energy conversion primer", Journal of the Marine Technology Society, vol. 6, no. 4, pp. 25-35, 2003.
  4. H. J. Kim, H. S. Lee, Y. K. Jung, D. H. Jung, D. S. Moon, and S. W. Hong, "Feasibility study on the commercial plant of ccean thermal energy conversion (OTEC-K50)", Proceedings of the Twenty-second International Offshore and Polar Engineering Conference, pp. 763-768, 2012.
  5. B. F. Tchanche, G. Lambrinos, A. Frangoudakis, and G. Papadakis, "Low-grade heat conversion into power using organic Rankine cycles - A review of various applications", Journal of the Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 3963-3979, 2011. https://doi.org/10.1016/j.rser.2011.07.024
  6. H. Uehara and Y. Ikegami, "Parametric performance analysis of OTEC system using HFC32/HFC134a mixtures", Journal of the ASME Solar Engineering, vol. 2, pp. 1005-1010, 1995.
  7. N. Yamada, A. Hoshi, and Y. Ikegami, "Performance simulation of solar-boosted ocean thermal energy conversion plant", Journal of the Renewable Energy, vol. 34, no. 7, pp. 1752-1758, 2009. https://doi.org/10.1016/j.renene.2008.12.028
  8. V. Maizza and A. Maizza, "Working fluids in non-steady flows for waste energy recovery systems", Journal of the Applied Thermal Engineering, vol. 16, no. 7, pp. 570-590, 1996.
  9. T. Yamamo, T. Furuhata, N. Arai, and K. Mori, "Design and testing of the organic Rankine cycle", Journal of the Energy, vol. 26, no. 3, pp. 239-251, 2001. https://doi.org/10.1016/S0360-5442(00)00063-3
  10. B. F. Tchanche, G. Papadakis, G. Lambrinos, and A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle", Journal of the Applied Thermal Engineering, vol. 29, no. 11-12, pp. 2468-2476, 2009. https://doi.org/10.1016/j.applthermaleng.2008.12.025
  11. J. I. Yoon, B. H. Ye, J. H. Heo, H. J. Kim, H. S. Lee, and C. H. Son, "Performance analysis of 20 kW OTEC power cycle using various working fluids", Journal of the Korean Society of Marine Engineering, vol. 37, no. 8, pp. 836-842, 2013 (in Korean). https://doi.org/10.5916/jkosme.2013.37.8.836
  12. D. Wang, X. Ling, and H. Peng, "Performance analysis of double organic Rankine cycle for discontinuous low temperature waste heat recovery", Journal of the Applied Thermal Engineering, vol. 48, pp. 63-71, 2012. https://doi.org/10.1016/j.applthermaleng.2012.04.017
  13. C. Guo, X. Du, L. Yang, and Y. Yang, "Performance analysis of organic Rankine cycle based on location of heat transfer pinch point in evaporator", Journal of the Applied Thermal Engineering, vol. 62, no. 1, pp. 176-186, 2014. https://doi.org/10.1016/j.applthermaleng.2013.09.036
  14. Y. R. Li, J. N. Wang, and M. T. Du, "Influence of coupled pinch point temperature difference and evaporation temperature on performance of organic Rankine cycle", Journal of the Energy, vol. 42, no. 1, pp. 503-509, 2012. https://doi.org/10.1016/j.energy.2012.03.018
  15. H. Aydin, H. S. Lee, H. J. Kim, S. K. Shin, and K. Park, "Off-design performance analysis of a closed-cycle ocean thermal energy conversion system with solar thermal preheating and superheating", Journal of the Renewable Energy, vol. 72, pp. 154-163, 2014. https://doi.org/10.1016/j.renene.2014.07.001
  16. N. J. Kim, S. H. Shin, and W. G. Chun, "A study on the thermodynamic cycle of OTEC system", Journal of the Korean Solar Energy Society, vol. 26, no. 2, pp. 9-18, 2006 (in Korean).
  17. H. S. Lee, H. J. Kim, D. H. Jung, and D. S. Moon, "A study on the improvement for cycle efficiency of closed-type OTEC", Journal of the Korean Society of Marine Engineering, vol. 35, no. 1, pp. 46-52, 2011 (in Korean). https://doi.org/10.5916/jkosme.2011.35.1.046
  18. Y. A. Cengel and M. A. Boles, Thermodynamics, McGrawHill, 2011.
  19. S. H. Shin, D. S. Jung, C. B. Kim, and T. B. Seo, "A study of ocean thermal energy conversion systems using Kalina cycle and regenerative Rankine cycle", Journal of the Korean Solar Energy Society, vol. 19, no. 3, pp. 101-113, 1999 (in Korean).
  20. M. Yari, A. Mehr, V. Zare, S. Mahmoudi, and M. Rosen, "Exergoeconomic comparison of TLC (trilateral Rankine cycle), ORC(organic Rankine cycle) and Kalina cycle using a low grade heat source", Journal of the Energy, vol. 83, pp. 712-722, 2015. https://doi.org/10.1016/j.energy.2015.02.080
  21. X. Zhang, M. He, and Y. Zhang, "A review of research on the Kalina cycle", Journal of the Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 5309-5318, 2012. https://doi.org/10.1016/j.rser.2012.05.040
  22. F. Sun, Y. Ikegami, B. Jia, and H. Arima, "Optimization design and exergy analysis of organic Rankine cycle in ocean thermal energy conversion", Journal of the Applied Ocean Research, vol. 35, pp. 38-46, 2012. https://doi.org/10.1016/j.apor.2011.12.006
  23. E. Wang, H. Zhang, B. Fan, M. Ouyang, Y. Zhao, and Q. Mu, "Study of working fluid selection of organic Rankine cycle(ORC) for engine waste heat recovery", Journal of the Energy, vol. 36, no. 5, pp. 3406-3418, 2011. https://doi.org/10.1016/j.energy.2011.03.041
  24. J. Chen and J. Yu, "Performance of a new refrigeration cycle using refrigerant mixture R32/R134a for residential air-conditioner applications", Journal of the Energy and Buildings, vol. 40, no. 11, pp. 2022-2027, 2008. https://doi.org/10.1016/j.enbuild.2008.05.003

Cited by

  1. Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to pinch point temperature difference vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.476
  2. Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle vol.40, pp.6, 2016, https://doi.org/10.5916/jkosme.2016.40.6.484
  3. 액화천연가스를 활용한 개방형 랭킨 사이클에 적용한 냉열 발전의 최적화에 대한 연구 vol.28, pp.3, 2015, https://doi.org/10.7316/khnes.2017.28.3.295
  4. 폐기물 소각시설 굴뚝의 배기가스를 이용한 유기랭킨사이클 시스템의 열역학적 해석 vol.21, pp.5, 2015, https://doi.org/10.7842/kigas.2017.21.5.27
  5. 20kW급 폐열회수 시스템 공정 설계에 관한 연구 vol.17, pp.4, 2015, https://doi.org/10.14775/ksmpe.2018.17.4.091
  6. 250kW급 폐열회수 시스템용 유기랭킨사이클 배관 열유동해석에 관한 연구 vol.18, pp.4, 2015, https://doi.org/10.14775/ksmpe.2019.18.4.026
  7. 250kW급 폐열회수 시스템 공정설계에 관한 연구 vol.18, pp.5, 2015, https://doi.org/10.14775/ksmpe.2019.18.5.090
  8. Conceptual design for combined ocean thermal energy conversion using computational fluid dynamics and heat balance analysis vol.44, pp.9, 2015, https://doi.org/10.1002/er.5469