References
- Sang-Hyun Lee, "A Study on Determining Factors for Manufacturers to Distributors Warehouse in Supply Chain", Journal of the Korea Convergence Society, Vol. 4, No. 2, pp. 15-20, 2013. https://doi.org/10.15207/JKCS.2013.4.2.015
- E. Y. Chan, W. K. Ching, M. K. Ng and J. Z. Huang, "An optimization algorithm for clustering using weighted dissimilarity measures", Pattern Recognition, Vol. 37, No. 5, pp. 943-952, 2004. https://doi.org/10.1016/j.patcog.2003.11.003
- L. Bai, J. Liang, C. Dang, and F. Cao, "A novel attribute weighting algorithm for clustering high-dimensional categorical data", Pattern Recognition, Vol. 44, No. 12, pp. 2843-2861, 2011. https://doi.org/10.1016/j.patcog.2011.04.024
- F. Cao, J. Liang, D. Li and X. Zhao, "A weighting k-modes algorithm for subspace clustering of categorical data", Neurocomputing, Vol. 108, pp. 23-30, 2013. https://doi.org/10.1016/j.neucom.2012.11.009
- L. Jing, M.K. Ng, and J. Z. Hunag, "An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparce data", Knowledge and Data Engineering, IEEE Transactions on, Vol. 19, No. 8, pp. 1026-1041, 2007. https://doi.org/10.1109/TKDE.2007.1048
- D. Barbara, Y. Li, and J. Couto, Coolcat: "an entropy-based algorithm for categorical clustering", in Proceedings of the 11th international conference on Information and knowledge management, ACM, pp. 582-589, 2002.
- Z. Huang, "Extensions to the k-means algorithm for clustering large data sets with categorical values", Data mining and Knowledge Discovery, Vol.2, No. 3, pp. 283-304, 1998. https://doi.org/10.1023/A:1009769707641
- F. Cao, J. Liang, D. Li, L. Bai and C. Dang, "A dissimilarity measure for the k-Modes clustering algorithm, Knowledge-Based Systems", Vol. 26, pp. 120-127, 2012. https://doi.org/10.1016/j.knosys.2011.07.011
- In-Kyu Park. "The generation of control rules for data mining", The Journal of Digital Policy & Management, Vol. 11, No.1, pp.343-349, 2013.
- J. L. Carbonera and M. Abel, "Categorical data clustering: a correlation-based approach for unsupervised attribute weighting", in Proceedings of ICTAI, 2014.
- J. L. Carbonera and M. Abel, "An entropy-based subspace clustering algorithm for categorical data", 2014 IEEE 26th International Conference on Tools with Artificial Intelligence, pVol. 48, No. 26, pp. 272-277, 2014.
- G. Gan and J. Wu, "Subspace clustering for high dimensional categorical data", ACM SIGDD Explorations Newsletter, Vol. 6, No. 2, pp.87-94, 2004. https://doi.org/10.1145/1046456.1046468
- M. J. Zaki, M. Peters I. Assent, and T. Seidl, "Clicks: An effective algorithm for mining subspace clusters in categorical datasets", Data & Knowledge Engineering, Vol. 60, No. 1, pp. 51-70, 2007. https://doi.org/10.1016/j.datak.2006.01.005
- E. Cesario, G. Manco and R. Ortale, "Top-down parameter-free clustering fo high-dimensional categorical data", IEEE Trans. on Knowledge and Data Engineering, Vol. 19, No. 12, pp. 1607-1624, 2007. https://doi.org/10.1109/TKDE.2007.190649
- H.-P. Kriegel, P. Kroger and A. Aimek, "Subspace clustering", Wisley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, Vol. 2, No. 4, pp. 351-364, 2012. https://doi.org/10.1002/widm.1057