참고문헌
- Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
- Daniels, M. and Hogan, J. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis, TEST, 18, 51-58.
- Demirtas, H. and Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out, Statistics in Medicine, 22, 1113-1121. https://doi.org/10.1002/sim.971
- Diggle, J. and Kenward, M. (1994). Informative dropout in longitudinal data analysis, Journal of the Royal Statistical Society, 43, 49-93.
- Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman & Hall, London.
- Gelfand, A. and Ghosh, S. (1998). Model choice: A minimum posterior predictive loss approach, Biometrika, 53, 1527-1537.
- Gelman, A., Carlin, J., Stern, H. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd Edition, Chapman & Hall, London, UK, 1995.
- Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
- Heckman, J. J. (1974). Shadow wages, market wages and labor supply, Econometrica, 42, 679-693. https://doi.org/10.2307/1913937
- Hogan, J. and Laird, N. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data, Statistics in Medicine, 16, 259-272. https://doi.org/10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
- Kenward, M. and Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data, Statistical Methods in Medical Research, 8, 51. https://doi.org/10.1191/096228099667825470
- Kim, J., Kim, E., Yi, H., Joo, S., Shin, K., Kim, J., Kimm, K. and Shin, C. (2006). Short-term incidence rate of hypertension in Korea middle-aged adults, Journal of Hypertension, 24, 2177-2182. https://doi.org/10.1097/01.hjh.0000249694.81241.7c
- Lee, K., Daniels, M. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data, Biostatistics, 14, 462-476. https://doi.org/10.1093/biostatistics/kxs058
- Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies, Journal of the American Statistical Association, 90, 1112-1121. https://doi.org/10.1080/01621459.1995.10476615
- Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd edition, John Wiley, New York.
- Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies, Wiley.
- Rubin, D. B. (1976). Inference and missing data, Biometrika, 63, 581-590. https://doi.org/10.1093/biomet/63.3.581
- Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys, Journal of the American Statistical Association, 72, 538-543. https://doi.org/10.1080/01621459.1977.10480610
- Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models, Journal of the American Statistical Association, 94, 448.
- Spiegelhalter, D. J., Best, N., Carlin, B. and van der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society, Series B, 64, 583-640, 651-653, 655, 658, 661, 671. https://doi.org/10.1111/1467-9868.00353