DOI QR코드

DOI QR Code

Bayesian Pattern Mixture Model for Longitudinal Binary Data with Nonignorable Missingness

  • Kyoung, Yujung (Department of Statistics, Sungkyunkwan University) ;
  • Lee, Keunbaik (Department of Statistics, Sungkyunkwan University)
  • 투고 : 2015.07.03
  • 심사 : 2015.10.23
  • 발행 : 2015.11.30

초록

In longitudinal studies missing data are common and require a complicated analysis. There are two popular modeling frameworks, pattern mixture model (PMM) and selection models (SM) to analyze the missing data. We focus on the PMM and we also propose Bayesian pattern mixture models using generalized linear mixed models (GLMMs) for longitudinal binary data. Sensitivity analysis is used under the missing not at random assumption.

키워드

참고문헌

  1. Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed models, Journal of the American Statistical Association, 88, 125-134.
  2. Daniels, M. and Hogan, J. (2008). Missing data in longitudinal studies: Strategies for Bayesian modeling and sensitivity analysis, TEST, 18, 51-58.
  3. Demirtas, H. and Schafer, J. L. (2003). On the performance of random-coefficient pattern-mixture models for non-ignorable drop-out, Statistics in Medicine, 22, 1113-1121. https://doi.org/10.1002/sim.971
  4. Diggle, J. and Kenward, M. (1994). Informative dropout in longitudinal data analysis, Journal of the Royal Statistical Society, 43, 49-93.
  5. Gamerman, D. (1997). Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, Chapman & Hall, London.
  6. Gelfand, A. and Ghosh, S. (1998). Model choice: A minimum posterior predictive loss approach, Biometrika, 53, 1527-1537.
  7. Gelman, A., Carlin, J., Stern, H. and Rubin, D. B. (2004). Bayesian Data Analysis, 2nd Edition, Chapman & Hall, London, UK, 1995.
  8. Hastings, W. K. (1970). Monte Carlo sampling methods using Markov Chains and their applications. Biometrika, 57, 97-109. https://doi.org/10.1093/biomet/57.1.97
  9. Heckman, J. J. (1974). Shadow wages, market wages and labor supply, Econometrica, 42, 679-693. https://doi.org/10.2307/1913937
  10. Hogan, J. and Laird, N. (1997). Model-based approaches to analysing incomplete longitudinal and failure time data, Statistics in Medicine, 16, 259-272. https://doi.org/10.1002/(SICI)1097-0258(19970215)16:3<259::AID-SIM484>3.0.CO;2-S
  11. Kenward, M. and Molenberghs, G. (1999). Parametric models for incomplete continuous and categorical longitudinal data, Statistical Methods in Medical Research, 8, 51. https://doi.org/10.1191/096228099667825470
  12. Kim, J., Kim, E., Yi, H., Joo, S., Shin, K., Kim, J., Kimm, K. and Shin, C. (2006). Short-term incidence rate of hypertension in Korea middle-aged adults, Journal of Hypertension, 24, 2177-2182. https://doi.org/10.1097/01.hjh.0000249694.81241.7c
  13. Lee, K., Daniels, M. and Joo, Y. (2013). Flexible marginalized models for bivariate longitudinal ordinal data, Biostatistics, 14, 462-476. https://doi.org/10.1093/biostatistics/kxs058
  14. Little, R. J. A. (1995). Modeling the drop-out mechanism in repeated-measures studies, Journal of the American Statistical Association, 90, 1112-1121. https://doi.org/10.1080/01621459.1995.10476615
  15. Little, R. J. A. and Rubin, D. B. (2002). Statistical Analysis with Missing Data, 2nd edition, John Wiley, New York.
  16. Molenberghs, G. and Kenward, M. (2007). Missing Data in Clinical Studies, Wiley.
  17. Rubin, D. B. (1976). Inference and missing data, Biometrika, 63, 581-590. https://doi.org/10.1093/biomet/63.3.581
  18. Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys, Journal of the American Statistical Association, 72, 538-543. https://doi.org/10.1080/01621459.1977.10480610
  19. Scharfstein, D. O., Rotnitzky, A. and Robins, J. M. (1999). Adjusting for nonignorable drop-out using semiparametric nonresponse models, Journal of the American Statistical Association, 94, 448.
  20. Spiegelhalter, D. J., Best, N., Carlin, B. and van der Linde, A. (2002). Bayesian measures of model complexity and fit, Journal of the Royal Statistical Society, Series B, 64, 583-640, 651-653, 655, 658, 661, 671. https://doi.org/10.1111/1467-9868.00353