DOI QR코드

DOI QR Code

Generation and Detection of Terahertz Waves Using Low-Temperature-Grown GaAs with an Annealing Process

  • Received : 2013.07.05
  • Accepted : 2013.10.26
  • Published : 2014.02.01

Abstract

In this letter, we present low-temperature grown GaAs (LTG-GaAs)-based photoconductive antennas for the generation and detection of terahertz (THz) waves. The growth of LTG-GaAs and the annealing temperatures are systematically discussed based on the material characteristics and the properties of THz emission and detection. The optimum annealing temperature depends on the growth temperature, which turns out to be $540^{\circ}C$ to $580^{\circ}C$ for the initial excess arsenic density of $2{\times}10^{19}/cm^3$ to $8{\times}10^{19}/cm^3$.

Keywords

References

  1. E.R. Brown et al., "Photomixing up to 3.8 THz in Low- Temperature-Grown GaAs," Appl. Phys. Lett., vol. 66, no. 3, 1995, pp. 285-287. https://doi.org/10.1063/1.113519
  2. M.R. Melloch et al., "Low-Temperature Grown III-V Materials," Annu. Rev. Mater. Sci., vol. 25, no. 25, 1995, pp. 547-600. https://doi.org/10.1146/annurev.ms.25.080195.002555
  3. M. Tani et al., "Spectroscopic Characterization of Low- Temperature Grown GaAs Epitaxial Films," Jpn. J. Appl. Phys., vol. 33, 1994, pp. 4807-4811. https://doi.org/10.1143/JJAP.33.4807
  4. X. Liu et al., "Native Point Defects in Low-Temperature-Grown GaAs," Appl. Phys. Lett., vol. 67, no. 2, 1995, pp. 279-281. https://doi.org/10.1063/1.114782
  5. I.S. Gregory et al., "High Resistivity Annealed Low-Temperature GaAs with 100 fs Lifetimes," Appl. Phys. Lett., vol. 83, no. 20, 2003, pp. 4199-4201. https://doi.org/10.1063/1.1628389
  6. I.S. Gregory et al., "Resonant Dipole Antennas for Continuous- Wave Terahertz Photomixers," Appl. Phys. Lett. vol. 85, no. 9, 2004, pp. 1622-1624. https://doi.org/10.1063/1.1789244
  7. B.E. Cole, M.J. Evans, and J. Cluff, Coherent THz Emitter with DC Power Reducing Resistor, US Patent 7,397,428 to TeraView Limited, Patent and Trademark Office, Washington, DC, 2008.

Cited by

  1. Real-time continuous-wave terahertz line scanner based on a compact 1 × 240 InGaAs Schottky barrier diode array detector vol.22, pp.23, 2014, https://doi.org/10.1364/oe.22.028977
  2. Metal-VO2 hybrid grating structure for a terahertz active switchable linear polarizer vol.26, pp.31, 2014, https://doi.org/10.1088/0957-4484/26/31/315203
  3. SOA-Integrated Dual-Mode Laser and PIN-Photodiode for Compact CW Terahertz System vol.38, pp.4, 2014, https://doi.org/10.4218/etrij.16.0115.0882
  4. Review of terahertz photoconductive antenna technology vol.56, pp.1, 2014, https://doi.org/10.1117/1.oe.56.1.010901
  5. 산업용 테라헤르츠 기술동향 vol.32, pp.3, 2014, https://doi.org/10.22648/etri.2017.j.320307
  6. Semiconductor-Based Terahertz Photonics for Industrial Applications vol.36, pp.2, 2014, https://doi.org/10.1109/jlt.2017.2786260
  7. Photo-conductive detection of continuous THz waves via manipulated ultrafast process in nanostructures vol.112, pp.3, 2014, https://doi.org/10.1063/1.5008790
  8. THz Radiation of Photoconductive Antennas based on {LT-GaAa/GaAa:Si} Superlattice Structures vol.128, pp.7, 2014, https://doi.org/10.1134/s0030400x20070097
  9. Photoconductive emitters for pulsed terahertz generation vol.23, pp.6, 2021, https://doi.org/10.1088/2040-8986/abf6ba
  10. Terahertz generation and detection of 1550-nm-excited LT-GaAs photoconductive antennas vol.68, pp.15, 2014, https://doi.org/10.1080/09500340.2021.1950230
  11. Principles of spintronic THz emitters vol.130, pp.9, 2014, https://doi.org/10.1063/5.0057536