DOI QR코드

DOI QR Code

Overlap-Based Chirp Spread Spectrum Transmission Scheme for Maritime Multipath Environment

해양 다중 경로 환경에 알맞은 오버랩 기반 처프 확산 대역 전송 기법

  • Chae, Keunhong (Sungkyunkwan University, College of Information & Communication Engineering) ;
  • Lee, Seong Ro (Mokpo National University, Department of Information and Electronics Engineering) ;
  • Yoon, Seokho (Sungkyunkwan University, College of Information & Communication Engineering)
  • Received : 2014.10.08
  • Accepted : 2014.11.07
  • Published : 2014.11.28

Abstract

The chirp spread spectrum (CSS) technique that transmits data signal by using a chirp signal is often used for maritime wireless communication systems such as sound detection radar systems for submarines. However, maritime multipath environment could reduce the data rate of the CSS system. To tackle the problem, an overlap-based CSS transmission scheme is proposed and analyzed in this paper: Based on the approximated Gaussian Q function, we derive a closed form expression of the bit error rate (BER) of the proposed overlap-based CSS system and investigate the mathematical relationship between the number of overlaps and the intersymbol interference (ISI).

처프 확산 대역 (chirp spread spectrum: CSS) 기술은 데이터 신호를 처프 신호를 통하여 전송하는 기술로, 잠수함 음향 탐지 등 해양 무선 통신 분야에서 널리 이용되어 왔다. 하지만, 해양 통신 중 존재하는 다중 경로 환경으로 인하여, CSS 기술의 데이터 전송률이 낮아질 수 있다. 이를 극복하기 위하여, 데이터 전송률을 증가시킬 수 있는 오버랩 기반 처프 확산 대역 기술을 제안하고 분석한다. 근사화된 가우시안 Q 함수를 바탕으로 오버랩 기반 CSS 시스템의 닫힌꼴 비트 오류율 (bit error rate: BER) 수식을 유도하고, 또한 오버랩 횟수에 따른 심벌 간 간섭을 (intersymbol interference: ISI) 분석한다.

Keywords

References

  1. H. Shen and A. Papandreou-Suppappola, "Diversity and channel estimation using time-varying signals and time-frequency techniques," IEEE Trans. Signal Process., vol. 54, no. 9, pp. 3400-3413, Sept. 2006. https://doi.org/10.1109/TSP.2006.877665
  2. IEEE Std. 802.15.4a-2007, Wireless MAC and PHY Specifications for Low-Rate Wireless Personal Area Networks (WPANs), IEEE, 2007.
  3. D. Zheng and J. Liang, "Filtering algorithms for chirp-spread-spectrum ranging," Advances in Wireless Sensor Networks, Springer, Berlin Heidelberg, pp. 702-714, 2013.
  4. S. K. Kwon and D. M. Lee, "Performance analysis of compensation algorithm for localization using the equivalent distance rate and the Kalman filter," J. KICS, vol. 37B, no. 5, pp. 370-376, may 2012. https://doi.org/10.7840/KICS.2012.37B.5.370
  5. M. K. Jung and D. M. Lee, "Performance analysis of the localization compensation algorithm for moving objects using the least-squares method," J. KICS, vol. 39C, no. 1, pp. 9-16, Jan. 2014. https://doi.org/10.7840/kics.2014.39C.1.9
  6. J. Yoo and H. Kim, "Performance evaluation of SDS-TWR ranging algorithms for CPS based on accurate wireless localization," J. KICS, vol. 39B, no. 9, pp-570-577, Sep. 2014. https://doi.org/10.7840/kics.2014.39B.9.570
  7. J. Pinkney, "Low complexity indoor wireless data links using chirp spread spectrum," Ph. D. Dissertation, Dept. Elect. Comput. Engineer., University of Calgary, Calgary, Canada, 2003.
  8. ICT standization roadmip: e-navigation, Telecommunications Technology Association (TTA), 2009.
  9. A. Springer, W. Gugler, M. Huemer, R. Koller, and R. Weigel, "A wireless spreadspectrum communication system using SAW chirped delay lines," IEEE Trans. Microwave Theory Tech., vol. 49, no. 4, pp. 754-760, Apr. 2001. https://doi.org/10.1109/22.915460
  10. O. Fonseca and I. N. Psaromiligkos, "BER performance of BPSK transmissions over multipath channels," Electron. Lett., vol. 42, no. 20, pp. 1164-1165, Sept. 2006. https://doi.org/10.1049/el:20061654
  11. D. Tse and P. Viswanath, Fundamentals of Wireless Communication, Cambridge Univ. Press, Cambridge, U.K., 2005.