DOI QR코드

DOI QR Code

Effects of Lower-Bound Resistances on Resistance Factors Calibration for Drilled Shafts

하한지지력이 현장타설말뚝의 저항계수에 미치는 영향

  • Kim, Seok-Jung (Technology R&D Institute, Soosung Engineering Co., Ltd.) ;
  • Park, Jae-Hyun (Geotechnical Engineering Research Div. Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Myoung-Mo (EPS Engineering)
  • Received : 2014.08.01
  • Accepted : 2014.11.18
  • Published : 2014.11.30

Abstract

Load and Resistance Factor Design (LRFD) is one of the limit state design methods, and has been used worldwide, especially in North America. Also, the study for LRFD has been actively conducted in Korea. However, the data for LRFD in Korea were not sufficient, so resistance factors suggested by AASTTO have been used for the design in Korea. But the resistance factors suggested by AASHTO represent the characteristics of bedrocks defined in the US, therefore, it is necessary to determine the resistance factors for designs in Korea, which can reflect the characteristics of bedrocks in Korea. Also, the calculated probabilities of failure from conventional reliability analyses which commonly use log-normal distribution are not realistic because of the lower tail that can be extended to zero. Therefore, it is necessary to calibrate the resistance factors considering the lower-bound resistance. Thus, this study calculates the resistance factors using thirteen sets of drilled shaft load test results, and then calibrates the resistance factors considering the lower-bound resistance corresponding to a target reliability index of 3.0. As a result, resistance factors from conventional reliability analyses were determined in the range of 0.13-0.32 for the shaft resistance, and 0.19-0.29 for the base resistance, respectively. Also, the lower bounds of resistance were determined based on the Hoek-Brown failure criteria (2002) and GSI downgrading. Considering the lower-bound resistances, resistance factors increased by 0~8% for the shaft, and 0~13% for the base, respectively.

한계상태설계법의 하나인 하중저항계수설계법의 이용이 북미를 중심으로 점차 확산되고 있는 가운데, 국내에서도 이에 대한 연구가 활발하게 진행되고 있다. 하지만, 국내에서는 자료가 충분히 확보되지 못하여 기초구조물의 설계에 AASHTO에서 제안한 저항계수를 설계에 이용하고 있다. AASHTO에서 제안하고 있는 저항계수는 북미에 보편적으로 존재하는 암반조건을 이용하여 결정된 저항계수로서, 국내지반에 적합한 저항계수를 독자적으로 개발할 필요가 있다. 또한, 기존의 신뢰성 분석 기법에서는 하중저항계수를 결정할 때, 저항의 최소값을 0으로 가정하는 일반적인 대수정규 분포를 이용하기 때문에, 이로부터 산정한 파괴확률은 비현실적이라고 알려져 있다. 따라서, 이를 개선하기 위하여 저항계수를 산정할 때 저항의 하한값이 0이 아닌, 현실적으로 의미가 있는 하한지지력을 이용하는 방법이 최근에 고안되었다. 따라서, 본 연구에서는 국내에서 수행된 현장타설말뚝 13본에 대한 재하시험자료를 면밀히 분석하여 저항계수를 산정한 다음, 현실성 있는 하한지지력을 산정하여 저항계수 값을 보정하였다. 그 결과, 목표신뢰도지수가 3.0일때, 기존의 신뢰성 분석 기법으로부터 산정된 주면저항계수와 선단저항계수는 각각 0.13-0.32, 0.19-0.29 이었으며, 하한지지력을 보정하여 구한 주면저항계수와 선단저항계수는 Carter & Kulhawy 공식의 경우 각각 8%와 13% 증가하였다.

Keywords

References

  1. AASHTO (2007), AASHTO LRFD Bridge Design Specifications, 4th Edition, AASHTO, Washington, DC.
  2. AASHTO (2010), AASHTO LRFD Bridge Design Specifications, 5th Edition, AASHTO, Washington, DC.
  3. Carter, J. P. and Kulhawy, F. H. (1988), Analysis and design of drilled shaft foundations socketed into rock, Report EL-5918, Electric Power Research Institute, Palo Alto, California.
  4. Fellenius, B. H. (1989), "Tangent modulus of piles determined from strain data", Foundation Engineering: Current Principles and Practices (GSP 22), ASCE, pp.500-510.
  5. Horvath, R. G. and Kenney, T. C. (1979), "Shaft resistance of rocksocketed drilled piers", Drilled shaft design and construction in Florida, Department of Civil Engineering, University of Florida, Gainesville.
  6. Hoek, E. and Brown, E. T. (1997), "Practical estimates of rock mass strength", International Journal of Rock Mechanics and Mining Sciences, Vol.34, No.8, pp.1165-1186. https://doi.org/10.1016/S1365-1609(97)80069-X
  7. Hoek, E., Carranza-Torres, C., and Corkum, B. (2002), "Hoek-Brown failure criterion-2002 edition", Proceedings of NARMS-Tac, pp. 267-273.
  8. Jung, S. J. (2010), "Calibration of Resistance Factors of Load and Resistance Factor Design for Drilled Shafts Embedded in Weathered Rock", Ph. D. thesis, Seoul National University, Seoul, Korea.
  9. Korea Institute of Construction Technology (KICT) (2008), Determination of Resistance Factors for Foundation Structure Design by LRFD, Research Policy/Infrastructure Development Program, Ministry of Land, Transport and Maritime Affairs, South Korea
  10. Najjar, S. S. (2005), "The importance of lower-bound capacities in geotechnical reliability assessments", Ph. D. thesis, Univ. of Texas at Austin, Austin, Tex, U.S.
  11. Najjar, S. S. (2009), "Importance of Lower-Bound Capacities in the Design of Deep Foundations", Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.135, No.7, pp.890-900 https://doi.org/10.1061/(ASCE)GT.1943-5606.0000044
  12. O'Neill, M. W. and Reese, L. C. (1999), Drilled Shafts: Construction Procedures and Design Methods, FHWA-IF-99-025, Department of Transportation, Federal Highway Administration, U.S.
  13. Rowe, R. K. and Armitage, H. H. (1987), "A design method for drilled piers in soft rock", Canadian Geotechnical Journal, CGS, Vol.24, No.1, pp.126-142. https://doi.org/10.1139/t87-011
  14. Zhang, L. and Einstein, H. H. (1998), "End bearing capacity of drilled shafts in rock", Journal of Geotechnical and Geoenvironmental Engineering, Vol.124, No.7, pp.574-584. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:7(574)