DOI QR코드

DOI QR Code

Changes in the growth and biochemical composition of Chaetoceros calcitrans cultures using light-emitting diodes

LED (Light-Emitting Diode)를 이용한 미세조류 (Chaetoceros calcitrans)의 성장 및 생화학적 조성 변화

  • An, Heui-Chun (Aquaculture Industry Division, East Sea Fisheries Research Institute, NFRDI) ;
  • Bae, Jae-Hyun (Aquaculture Industry Division, East Sea Fisheries Research Institute, NFRDI) ;
  • Kwon, O-Nam (East Costal Life Science Institute Gangneung-Wonju National University) ;
  • Park, Heum-Gi (Department of Marine Bioscience Gangneung-Wonju National University) ;
  • Park, Jin-Chul (Department of Marine Bioscience Gangneung-Wonju National University)
  • 안희춘 (국립수산과학원 동해수산연구소 해역산업과) ;
  • 배재현 (국립수산과학원 동해수산연구소 해역산업과) ;
  • 권오남 (강릉원주대학교 동해안생명과학연구소) ;
  • 박흠기 (강릉원주대학교 해양자원육성학과) ;
  • 박진철 (강릉원주대학교 해양자원육성학과)
  • Received : 2014.08.29
  • Accepted : 2014.11.11
  • Published : 2014.11.30

Abstract

The marine microalgae Chaetoceros calcitrans was cultured under a fluorescent lamp (CON) and light-emitting diodes (LEDs) of various wavelengths (blue, LB; red, LR; green, LG; white, LW); changes in growth, fucoxanthin, chlorophyll-a, amino acid and fatty acid profiles were investigated. LR-exposed cultures exhibited the highest specific growth rate (SGR) (0.34), whereas LG-exposed cultures showed the lowest SGR (0.26). After cultivation for 10 days, the maximum dry cell weight (g/L) of LR-exposed cultures was significantly higher than that of those exposed to other light conditions (LR${\geq_-}$CON>LB${\geq_-}$LW${\geq_-}$LG). Eicosapentaenoic acid (EPA) levels were significantly higher in CON-exposed cultures compared to those exposed to LW (P<0.05), with no marked difference compared to those exposed to LB, LR and LG (P>0.05). The fucoxanthin content was highest in LB-exposed cultures ($6.3{\mu}g/mL$), whereas LW showed the lowest ($3.6{\mu}g/mL$; P<0.05). Chlorophyll-a content was highest in cultures exposed to LB compared to other light sources. These results suggest consistent differences in growth and biochemical composition after exposure to light of different wavelengths.

Keywords

References

  1. Aguilera J, Gordillo FJ, Karsten U, Figueroa FL and Niell FX. 2000. Light quality effect of photosynthesis and efficiency of carbon assimilation in the red alga Porphyra leucosticta. J Plant Physiol 157, 86-92. (doi:10.1016/S0176-1617(00)80140-6)
  2. Ben-Amotz A, Shaish A and Avron M. 1989. Mode of action of the massively accumulated ${\beta}$-carotene of Dunaliella bardawil in protecting the alga against damage by excess irradiation. Plant Physiol 91, 1040-1043. https://doi.org/10.1104/pp.91.3.1040
  3. Choi BR, Lim JH, Lee JK and Lee TY. 2013. Optimum conditions for cultivation of Chlorella sp. FC-21 using light emitting diodes. Korean J Chem Eng 30, 1614-1619. (doi:10.1007/s11814-013-0081-0)
  4. Coutteau P and Sorgeloos P. 1993. Substitute diets for live algae in the intensive rearing of bivalve mollusks a state of the art report. World Aquacult 24, 45-52.
  5. Das P, Lei W, Aziz SS and Obbard JP. 2011. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bio Technol 102, 3883-3887. (doi:10.1016/j.biortech.2010.11.102)
  6. Duncan DB. 1955. Multiple-range and mutiple F tests. Biometrics 11, 1-42. (doi:10.2307/3001478)
  7. Figueroa FL, Aguilera J and Niell FX. 1994. Red and blue light regulation of growth and photosynthetic metabolism in Porphyra umbilicalis. Eur J Phycol 30, 11-18. (doi:10.1080/09670269500650761)
  8. Figueroa FL, Aguilera J, Jimenez C, Vergara JJ, Robles MD and Niell FX. 1995. Growth, pigment synthesis and nitrogen assimilation in the red alga Porphyra sp. under blue and red light. Scientia Marina 59, 9-20.
  9. Katsuda T, Shimahara K, Shiraishi H, Yamagami K, Ranjbar R and Katoh S. 2006. Effect of flashing light from blue light emitting diodes on cell growth and astaxanthin production of Haematococcus pluvialis. J Biosci Bioeng 102, 442-446. (doi:10.1263/jbb.102.442)
  10. Kim JY, Joo H and Lee JH. 2011. Carbon dioxide fixation and light source effects of Spirulina platensis NIES 39 for LED photobioreactor design. App Chem Eng 22, 301-307.
  11. Lamers PP, van de Laak CC, Kaasenbrood PS, Lorier J, Janssen M, De Vos RC, Bino RJ and Wijffels RH. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Bio Bioeng 106, 638-648. (doi:10.1002/bit.22725)
  12. Lee CG and Palsson BO. 1994. High-density algal photobioreactors using light-emitting diodes. Biotechnol Bioeng 44, 1161-1167. https://doi.org/10.1002/bit.260441002
  13. Marchetti J, Bougaran G, Jauffrais T, Lefebvre S, Rouxel C, Saint-Jean B, Lukomska E, Robert R and Cadoret JP. 2013. Effects of blue light on the biochemical composition and photosynthetic activity of Isochrysis sp. (T-iso). J Appl Phycol 25, 109-119. (doi:10.1007/ s10811-012-9844-y)
  14. Markou G. 2014. Effect of various colors of light-emitting diodes (LEDs) on the biomass composition of Arthrospira platensis cultivated in semi-continuous mode. Appl Biochem Biotechnol 172, 2758-2768. (doi:10.1007/s12010-014-0727-3)
  15. Mogedas B, Casal C, Forja E and Vilchez C. 2009. ${\beta}$-carotene production enhancement by UV-A radiation in Dunaliella bardawil cultivated in laboratory reactors. J Biosci Bioeng 108, 47-51. (doi:10.1016/j.jbiosc.2009.02.022)
  16. Mouget JL, Rosa P and Tremblin G. 2004. Acclimation of Haslea strearia to light of different spectral qualities- confirmation of 'chromatic adaptation' in diatoms. J Photochem Photobiol B 75, 1-11. (doi:10.1016/j.jphotobiol.2004.04.002)
  17. Oh HM, Choi AR and Mheen TI. 2003. High-value materials from microalgae. Kor J Microbiol Biotechnol 31, 95-102.
  18. Oh SJ, Park DS, Yang HS, Yoon YH and Honjo T. 2007. Bioremediation on the benthic layer in polluted inner bay by promotion of Microphytobenthos growth using light emitting diode (LED). J Kor Soc Mar Env Eng 10, 93-101.
  19. Park HJ, Jin EJ, Jung TM, Joo H and Lee JH. 2010. Optimal culture conditions for photosynthetic microalgae Nannochloropsis oculata. App Chem Eng 21, 659-663.
  20. Park JC, Kwon ON, Hong SE, An HC, Bae JH, Park MS and Park HG. 2013. Changes in the growth and biochemical composition of Nannochloropsis sp. cultures using light-emitting diodes. Kor J Fish Aquat Sci 46, 259-265. https://doi.org/10.5657/KFAS.2013.0259
  21. Peng J, Yuan JP, Wu CF and Wang JH. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: metabolism and bioactivities relevant to human health. Marine Drugs 9, 1806-1828. (doi:10.3390/md9101806)
  22. Pratoomyot J, Srivilas P and Noiraksar T. 2005. Fatty acids composition of 10 microalgal species. Songklan J Sci Technol 27, 1179-1187. (doi:10.1016/0022-0981(89)90029-4)
  23. Raghavan G, Haridevi CK and Gopinathan CP. 2008. Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquaculture Research 39, 1053-1058. (doi:10.1111/j.1365-2109.2008.01964.x)
  24. Rico-Martinez R and Dodson SI. 1992. Culture of the rotifer, Brachionus calyciflorus Pallas. Aquaculture 105, 191-199. (doi:10.1016/0044-8486(92)90130-D)
  25. Ruyters G. 1984. Effects of blue light on enzymes. Senger H, ed. Springer Verlag, Berlin, Germany, 283-301.
  26. Saha SK, McHugh E, Hayes J, Moane S, Walsh D and Murray P. 2013. Effect of various stress-regulatory factors on biomass and lipid production in microalga Haematococcus pluvialis. Bioresour Technol 128, 118-124. (doi:10.1016/j.biortech.2012.10.049)
  27. Sanchez-Saavedra MP and Voltolina D. 2006. The growth rate, biomass production and composition of Chaetoceros sp. grown with different light sources. Aquacult Eng 35, 161-165. (doi:10.1016/j.aquaeng.2005.12.001)
  28. Schofield O, Bidigare RR and Preelin BB. 1990. Spectral photosynthesis quantum yield and blue-green light enhancement of productivity rates in the diatom Chaetoceros gracile and prymnesiophyte Emiliania huxleyi. Mar Ecol Prog Ser 64, 175-186. https://doi.org/10.3354/meps064175
  29. Seyfabadi J, Ramezanpour Z and Zahra AK. 2011. Protein, fatty acid, and pigment content of Chlorella vulgaris under different light regimes. J Appl Phycol 23, 721-726. (doi:10.1007/s10811-010-9569-8)
  30. Shariati M and Hadi MR. 2011. Microalgae biotechnology and bioenergy in Dunaliella. Angelo C, ed. Progress in Molecular and Environmental Bioengineering, Intech, Rijeka, Chapter 22. (doi:10.5772/19046)
  31. Wang CY, Fu CC and Liu YC. 2007. Effects of using light emitting diodes on the cultivation of Spirulina platensis. Biochem Eng 37, 21-25. (doi:10.1016/j.bej.2007.03.004)
  32. Webb KL and Chu FE. 1983. Phytoplankton as a food source for bivalve larvae. Pruder GD, ed. World Mariculture Society Spcc. Publ., Louisiana State University, Lousiana, USA, 272-291.
  33. Wellburn AR. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144, 307-313. (doi:10.1016/S0176-1617 (11)81192-2)
  34. Yoshioka M, Yago T, Yoshie-Stark Y, Arakawa H and Morinaga T. 2012. Effect of high frequency of intermittent light. Aquaculture 338-341, 111-117. (doi:10.1016/j.aquaculture.2012.01.005)