DOI QR코드

DOI QR Code

Distinct Band Gap Tunability of Zinc Oxysulfide (ZnOS) Thin Films Synthesized from Thioacetate-Capped ZnO Nanocrystals

  • Lee, Don-Sung (Department of Chemistry, Chonnam National University) ;
  • Jeong, Hyun-Dam (Department of Chemistry, Chonnam National University)
  • Received : 2014.11.25
  • Accepted : 2014.11.30
  • Published : 2014.11.30

Abstract

Zinc oxysulfide nanocrystals (ZnOS NCs) were synthesized by forming ZnS phase on a ZnO matrix. ZnO nanocrystals (NCs) with a diameter of 10 nm were synthesized by forced hydrolysis in an organic solvent. As-synthesized ZnO NCs aggregated with each other due to the high surface energy. As acetic acid (AA) was added into the milky suspension of the aggregated ZnO NCs, transparent solution of well dispersed ZnO NCs formed. Finally ZnOS NCs were formed by adding thioacetic acid (TAA) to the transparent solution. The effect of recrystallization on the structural, optical and electrical properties of the ZnOS NCs were studied. The results of UV-vis absorption confirmed the band gap tunability caused by increasing the curing temperature of ZnOS thin films. This may have originated from the larger effective size due to the recrystallization of zinc sulfide (ZnS). From XRD result we identified that ZnOS thin films have a zinc blende crystal structure of ZnS without wurtzite ZnO structure. This is probably due to the small amount of ZnO phases. These assertions were verified through EDS of FE-SEM, XPS and EDS mapping of HR-TEM results; we clearly proved that ZnOS were comprised of ZnS and ZnO phases.

Keywords

References

  1. Joo. J, Kwon. S. G, You. J. H, and Hyeon. T. H, Adv. Mater. 17, 1873 (2005). https://doi.org/10.1002/adma.200402109
  2. Rodriguez-Gattorno. G, Santiago-Jacinto. P, Rendon-Vazquez. L, Nemeth. J, Dekany. I, and Diaz. D, J. Phys. Chem. B. 107, 12597 (2003). https://doi.org/10.1021/jp035788x
  3. Polat. , Aksu. S, Altunba . M, and Bacaksz. E, Phys. Status Solidi A. 209, 160 (2012). https://doi.org/10.1002/pssa.201127248
  4. Hsieh. T. -M, Lue. S. J, Ao. J, Sun. Y, and Feng. W. -S, Journal of Power Sources. 246, 443 (2014). https://doi.org/10.1016/j.jpowsour.2013.07.090
  5. Platzer-Bjorkman. C, Torndahl. T, Abou-Ras. D, Malmström. J, Kessler. J, and Stolt, L, J. Appl. Phys. 100, 044506 (2006). https://doi.org/10.1063/1.2222067
  6. Orent. T, J. Vac. Sco. Technol. A. 9, 2447 (1991). https://doi.org/10.1116/1.577254
  7. Meyer. B. K, Polity. A, Farangis, B. He. Y, Hasselkamp. D, Kramer. T, Wang. C, Haboeck. U, and Hoffmann. A, Phys. Stat. sol. C. 1, 694 (2004). https://doi.org/10.1002/pssc.200304256
  8. Sanders. B. W, Kitai. A, Chem. Mater. 4, 1005 (1992). https://doi.org/10.1021/cm00023a015
  9. Bakke. J. R, Tanskanen. J. T, Hagglund. C, Pakkanen. T. A, and Vent. S. F, J. Vac. Sci. Technol. A. 30, 01A135-1 (2012). https://doi.org/10.1116/1.3664758
  10. Deulkar. S. H, Huang. J. -L, and Neumann-Spallart. M, Journal of Electronic Materials. 39, 589 (2010). https://doi.org/10.1007/s11664-009-1069-8
  11. Seon. J. -B, Lee. S. Y, Kim. J. M, and Jeong. H. -D, Chem. Mater. 21, 604 (2009). https://doi.org/10.1021/cm801557q
  12. Mai. X. D, Dao. D. T, and Jeong. H. -D, Curr. Appl. Phys. 13, 1075 (2013). https://doi.org/10.1016/j.cap.2013.02.017
  13. Brayner. R, Ferrari-Iliou. R, Brivois. N, Djediat. C, Benedetti. M. F, and Fievet. F, Nano. Lett. 6, 866 (2006). https://doi.org/10.1021/nl052326h
  14. Brayner. R, Dahoumane. S. A, Yepremian. C, Djediat. C, Meyer. M, Coute. A, and Fievet. F, Langmuir 26, 6522 (2010). https://doi.org/10.1021/la100293s
  15. Jezequel. D, Guenot. J, Jouini. N, and Fievet. F, J. Mater. Res. 10, 77 (1995). https://doi.org/10.1557/JMR.1995.0077
  16. Liu. X, Luo. Y, Li. H, Fan. Y, Yu. Z, Lin. Y, Chen. L, and Meng. Q, Chem. Commun. 2847 (2007).
  17. Qin. L, Shing. C, Sawyer. S, and Dutta. P. S, Optical Materials. 33, 359 (2011). https://doi.org/10.1016/j.optmat.2010.09.020
  18. Lu. Z, Xu. J, Xie. X, Wang. H, Wang. C, Kwok. S. -Y, Wong. T, Kwong. H. L, Bello. I, Lee. C. -S, Lee. S. -T, and Zhang. W, J. Phys. Chem. C. 116, 2656 (2012). https://doi.org/10.1021/jp208254z
  19. Zeng. H, Cai. W, Liu. P, Xu. X, Zhou. H, Klingshirn. C, and Kalt. H, ACS Nano 2, 1661 (2008). https://doi.org/10.1021/nn800353q
  20. Jiao. B. C, Zhang. X. D, Wei. C. C, Sun. J, Huang. Q, and Zhao. Y, Thin Solid Films. 520, 1323 (2011). https://doi.org/10.1016/j.tsf.2011.04.152
  21. Cao. Y, Galoppini. E, Reyes. P. I, Duan. Z, and Lu. Y, Langmuir 28, 7947 (2012). https://doi.org/10.1021/la3006037
  22. Caglar. M, Caglar. Y, and Ilican. S, J. Optoelectro. Adv. M. 8, 1410 (2006).
  23. Segala. K, Dutra. R. L, Vranco. C. V, Pereira. A. S, and Trindade. T, J. Braz. Chem. Soc. 21, 1986 (2010). https://doi.org/10.1590/S0103-50532010001000026
  24. Meulenkamp. E. A, J. Phys. Chem. B. 102, 5566 (1998). https://doi.org/10.1021/jp980730h
  25. Nabiyouni. G, Sahraei. R, Toghiany. M, Majles Ara. M. H, and Hedayati. K, Rev. Adv. Mater. Sci. 27, 52 (2011).
  26. Lee. S, Jeong. Y. M, Jeong. S. H, Lee. J. S, Jeon. M. H, and Moon. J. H, Superlattice. Microst. 44, 761 (2008). https://doi.org/10.1016/j.spmi.2008.09.002
  27. Huang. Q. L, Wang. M, Zhong. H. -X, Chen. X. -T, Xue. Z. -L, and You. X. -Z, Cryst. Growth Des. 8, 1412 (2008). https://doi.org/10.1021/cg070539+
  28. Xu. J. F, Ji. W, Lin. J.Y, Tang. S.H, Du. Y. W, Appl. Phys. A. 66, 639 (1998).
  29. Ollinger. M, Craciun. V, and Singh. R. K, Mat. Res. Soc. Symp. Proc. 704, w8.4.1 (2002).
  30. Kim. S. -H, Kim. H. -K, and Seong. T. -Y, Apply. Phys. Lett. 86, 022101 (2005). https://doi.org/10.1063/1.1839285
  31. Zabet-Khosousi. A, and Dhirani. A. A, Chem. Rev. 108, 4072 (2008). https://doi.org/10.1021/cr0680134
  32. Kim. S. -J, and Lee. J. -S, Nano Lett. 10, 2884 (2010). https://doi.org/10.1021/nl1009662
  33. Talapin. D. V, Lee. J. -S, Kovalenko. M. V, and Shevchenko. E. V, Chem. Rev. 110, 389 (2010). https://doi.org/10.1021/cr900137k