DOI QR코드

DOI QR Code

Afterglow Properties of LLBO Scintillation Crystal

리튬 루테튬 보레이트 섬광단결정의 잔광 특성

  • Kim, Sunghwan (Department of Radiological Science, Cheongju University)
  • Received : 2014.11.17
  • Accepted : 2014.11.28
  • Published : 2014.11.30

Abstract

We grew a $Li_6Lu(BO_3)_3:Ce^{3+}$ single crystal as a new scintillator. And, the scintillation and thermoluminescence properties of the scintillator were determined. The emission spectrum of $Li_6Lu(BO_3)_3:Ce^{3+}$ is located in the range of 370~530 nm, peaking at 416 nm and 439 nm, due to the $5d{\rightarrow}4f$ transition of $Ce^{3+}$ ions. The fluorescence decay time of the crystal is composed two components. The fast component is 34 ns (84%) and the slow component is 125 ns (16%) of the crystal. The afterglow is caused by the electron and hole traps in the crystal lattice. We determined physical parameters of the traps in the crystal. The thermoluminescence trap are composed a trap. The determined activation energy (E) and frequency factor (s) of the TL trap are 1.05 eV and $4.4{\times}10^{10}s^{-1}$, respectively.

Keywords

References

  1. H. Kraus, F.A. Danevich, S. Henry, V.V. Kobychev, V.B. Mikhailik, V.M. Mokina, S.S. Nagorny, O.G. Polischuk, and V.I. Tretyak, "$ZnWO_4$ scintillators for cryogenic dark matter experiments", Nucl. Instr. Meth. in Phys. Res. Sec. A, Vol. 600, pp. 594-598, 2009. https://doi.org/10.1016/j.nima.2008.12.142
  2. S. H. Shin, K. W. Jang, D. H. Cho, W. J. Yoo, J. K. Seo, B. S. Lee, J. H. Moon, S. Kim, and B. G. Park, "Measurements of relative depth dose rates for a brachytherapy Ir-192 source using an organic scintillator fiber-optic radiation sensor", J. Sensor Sci. & Tech., Vol. 17, No. 6, pp. 462-469, 2008. https://doi.org/10.5369/JSST.2008.17.6.462
  3. T. Yanagida, "Study of rare-earth-doped scintillators", Opt Mater, Vol. 35, pp.1987-1992, 2013. https://doi.org/10.1016/j.optmat.2012.11.002
  4. K. T. Han, W. J. Yoo, S. H. Shin, D. Y. Jeon, J. Y. Park, B. G. Park, and B. S. Lee "Development of fiber-optic radiation sensor using LYSO scintillator for gamma-ray spectroscopy", J. Sensor Sci. & Tech., Vol. 21, No. 4, pp.287-292, 2012. https://doi.org/10.5369/JSST.2012.21.4.287
  5. J. S. Neal, L. A. Boatner, M. Spurrier, P. Szupryczynski, and C.L. Melcher, "Cerium-doped mixed-alkali rare-earth double-phosphate scintillators for thermal neutron detection", Nucl. Instr. Meth. in Phys. Res. Sec. A, Vol. 579, pp.19-22, 2007. https://doi.org/10.1016/j.nima.2007.04.005
  6. R. Machrafi, N. Khan, and A. Miller, "Response functions of $Cs_2LiYCl_6$:Ce scintillator to neutron and gamma radiation", Rad. Meas., Vol. 70, pp. 5-10, 2014. https://doi.org/10.1016/j.radmeas.2014.07.010
  7. A. K. Singh, M. Tyagi, S. G. Singh, D. G. Desai, S. Sen, B. K. Nayak, M. Urffer, C. L. Melcher, and S. C. Gadkari, "Cerium doped lithium gadolinium borate: A neutron scintillator", Proc. of the DAE Symp. on Nucl. Phys. Vol. 58, 2013.
  8. Ogorodnikov, N. E. Poryvay, I. N. Sedunova, A. V. Tolmachev, and R. P. Yavetskiy., "Thermally stimulated recombination processes and luminescence in $Li_6$(Y, Gd, Eu)$(BO_3)_3$ crystals", Phys Solid State, Vol. 53, pp. 263-270, 2011. https://doi.org/10.1134/S1063783411020211
  9. M. Balcerzyk, Z. Gontarz, M. Moszynski, and M. Kapusta, "Future hosts for fast and high light output cerium-doped scintillator", J. Lumin., Vol. 87-89, pp. 963-966, 2000. https://doi.org/10.1016/S0022-2313(99)00492-5
  10. J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, et. al., "Performance of cerium-doped $Gd_3Al_2Ga_3O_{12}$ (GAGG:Ce) scintillator in gamma-ray spectrometry", Nucl. Instr. Meth. In Phys. Res. Sec. A, Vol. 712, pp. 34-40, 2013. https://doi.org/10.1016/j.nima.2013.01.064
  11. Carel W.E van Eijk, "Development of inorganic scintillators", Nucl. Instr. and Meth. in Phys. Res. Sec. A, Vol. 392, pp. 285-290, 1997. https://doi.org/10.1016/S0168-9002(97)00239-8
  12. L. M. Bollinger and G. E. Thomas, "Measurement of the time dependence of scintillation intensity by a delayed-coincidence method", Rev. Sci. Instr., Vol. 32, pp. 1044-1050, 1961. https://doi.org/10.1063/1.1717610
  13. R. Brun and F. Rademakers, ROOT User Guide, CERN, 2013.
  14. H. Kunkely and A. Vogler, "Can halides serve as a charge transfer acceptor? Metal-centered and metal-to-ligand charge transfer excitation of cerium (III) halides", Inorganic Chem. Comm., Vol. 9, pp. 1-3, 2006. https://doi.org/10.1016/j.inoche.2005.08.017
  15. K. S. Chung, H. S. Choe, J. I. Lee, and J. L. Kim, "An algorithm for the de-convolution of the optically stimulated luminescence glow curves involving the mutual interactions among the electron traps", Rad. Meas., Vol. 46, pp. 1598-1601, 2011. https://doi.org/10.1016/j.radmeas.2011.05.071
  16. R. Chen, "Glow curves with general order kinetics", J. Electrochem. Soc., Vol. 116, pp. 1254-1257, 1969. https://doi.org/10.1149/1.2412291