DOI QR코드

DOI QR Code

천음속 에어포일 유동에서 비평형 응축이 Force Coefficients 에 미치는 영향

Effect of Non-Equilibrium Condensation on Force Coefficients in Transonic Airfoil Flow

  • 전흥균 (대구보건대학교 소방안전관리과) ;
  • 최승민 (경북대학교 기계공학부) ;
  • 강희보 (경북대학교 기계공학부) ;
  • 권영두 (경북대학교 기계공학부) ;
  • 권순범 (경북대학교 기계공학부)
  • Jeon, Heung Kyun (Dept. of Fire Safety Management, Daegu Health College) ;
  • Choi, Seung Min (School of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kang, Hui Bo (School of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kwon, Young Doo (School of Mechanical Engineering, Kyungpook Nat'l Univ.) ;
  • Kwon, Soon Bum (School of Mechanical Engineering, Kyungpook Nat'l Univ.)
  • 투고 : 2014.05.15
  • 심사 : 2014.09.30
  • 발행 : 2014.12.01

초록

본 연구는 NACA0012 천음속 에어포일 유동에 있어서 비평형 응축이 Force 계수(압력, 양력 및 항력계수)에 미치는 영향을 TVD 수치해석을 통하여 연구하였다. 정체점 온도 298 K, 받음각 ${\alpha}=3^{\circ}$인 경우, 주류 마하수 0.78~0.81에서는 정체점 상대습도의 증가함에 따라 양력은 단순 감소한다. 반면 Lift force break 마하수 영역의 주류 마하수에서는 정체점 상대습도의 증가에 따라 양력은 오히려 증가한다. 받음 각 ${\alpha}=3^{\circ}$, 정체점 상대습도가 0%인 경우, 주류 마하수의 증가에 따라 항력은 급격하게 증가하지만, 응축의 영향이 큰 60%인 경우에는 주류 마하수의 증가에 조금 증가할 뿐이다. 동일한 주류 마하수인 경우 비평형 응축에 따른 전 항력의 감소는 받음각과 정체점 상대습도가 증가할수록 크게 된다. 응축이 없는 ${\Phi}_0=0%$인 경우는 주류 마하수가 크고 받음각이 클수록 Wave drag은 크게 되나 응축의 영향이 비교적 큰 ${\Phi}_0=50%$ 이상인 경우는 오히려 Wave drag이 작아지는 것으로 나타났다. 한편, 정체점 상대습도가 낮고, 주류 마하수가 클수록 충격파 직전의 최대 마하수는 커지는 것으로 나타났다.

The present study investigated the effects of non-equilibrium condensation with the angle of attack on the coefficients of pressure, lift, and drag in the transonic 2-D flow of NACA0012 by numerical analysis of the total variation diminishing (TVD) scheme. At $T_0=298k$ and ${\alpha}=3^{\circ}$, the lift coefficients for $M_{\infty}=0.78$ and 0.81 decreased monotonically with increasing ${\Phi}_0$. In contrast, for $M_{\infty}$ corresponding to the Mach number of the force break, $C_L$ increased with ${\Phi}_0$. For ${\alpha}=3^{\circ}$ and ${\Phi}_0=0%$, $C_D$ increased markedly as $M_{\infty}$ increased. However, at ${\Phi}_0=60%$ and ${\alpha}=3^{\circ}$, which corresponded to the case of the condensation having a large influence, $C_D$ increased slightly as $M_{\infty}$ increased. The decrease in profile drag by non-equilibrium condensation grew as the angle of attack and stagnation relative humidity increased for the same free stream transonic Mach number. At ${\Phi}_0=0%$, the coefficient of the wave drag increased with the attack angle and free stream Mach number. When ${\Phi}_0$ > 50%, the coefficient of the wave drag decreased as ${\alpha}$ and $M_{\infty}$ increased. Lowering ${\Phi}_0$ and increasing $M_{\infty}$ increased the maximum Mach number.

키워드

참고문헌

  1. Kwon, S. B. and Ahn, H. J., 2001, "Supersonic Moist Air Flow with Condensation in a Wavy Wall Channel," KSME International Journal, Vol. 15, No. 4, pp. 492-499.
  2. Kwon, S. B., Lee, S. J., Shin, S. Y. and Kim, S. H., 2009, "A Study on the Flow with Non-Equilibrium Condensation in a Minimum Length Nozzle," JMST, Vol. 23, pp. 1736-1742. https://doi.org/10.1007/s12206-009-0421-5
  3. Baek, S. C., Kwon, S. B., Kim, H. D., Setoguchi, T. and Matsuo, S., 2006, "Study of Moderately Under-expanded Moist Air Jets," AIAA, Vol. 44, No. 7, pp. 1624-1627. https://doi.org/10.2514/1.10029
  4. Wegener, P. P., 1975, "Gas Dynamics of Expansion Flows with Condensation and Homogeneous Nucleation of Water Vapor," Acta Mechanica, Vol. 21, pp. 165-213. https://doi.org/10.1007/BF01172836
  5. Orina, R. A. and Lundquist, B. E., 1963, "Emendations to Nucleation Theory and Homogeneous Nucleation of Water from the Vapor," J. Chem. Phys., Vol. 38, p. 2082. https://doi.org/10.1063/1.1733936
  6. Matsuo, S., Kawagoe, S., Setoguchi, T., Sonoda, K. and Kwon, S. B., 1984, "Effect of Homogeneous Condensation of Steam on Flow Field in Supersonic Nozzle," Proc. of 14th Int. Symp. on Rarefied Gas Dyn. Jul. Tsukuba, Japan.
  7. Schnerr, G. H., 1993, "Transonic Aerodynamics including Strong Effects from Heat Addition," Computers fluids, Vol. 22, No.2-3, pp. 103-116. https://doi.org/10.1016/0045-7930(93)90043-9
  8. Kim, I. W., Alam, M. M. A., Lee, S. J., Kwon, Y. D. and Kwon, S. B., 2012, "The Effect of Non-equilibri- um Condensation on the Drag Coefficient in a Transonic Airfoil Flow," Journal of Thermal Science, Vol. 21, No. 6, pp. 518-524. https://doi.org/10.1007/s11630-012-0576-8
  9. Choi, S. M., Kim, J. S., Kwon, Y. D. and Kwon, S. B., 2013, "The Effect of Non-equilibrium Condensation on the Coefficients of Force with the Angle of Attack in the Transonic Airfoil Flow of NACA0012," JMST, Vol. 27, No. 6, pp. 1671-1676. https://doi.org/10.1007/s12206-013-0415-1
  10. Frenkel, J., 1946, Kinetic theory of liquids, Dover Pub.Inc., New York.
  11. Baek, S. C., Kwon, S. B. and Kim, H. D., 2004, "Passive Prandtl-Meyer Expansion Flow with Homogeneous Condensation," KSME International Journal, Vol. 18, No. 3 pp. 407-418.
  12. Cengel, Y. A. and Cimbala, J. M. 2010, Fluid mechanics, 2nd ed. McGraw Hill, New York, p. 356.
  13. Dohrmann, U., 1989, "Ein numerisches Verfahren zur Berechnung Statianarer Transonicscher Stromungen mit Energiezufuhr durch Homogene Kondensation," Univ. Karlsruhe, Dr. of Eng. Dissertation, p. 19.
  14. Pai, S. I. and Luo, S., 1991, Theoretical and Computational Dynamics of a Compressible Flow, Sci. Press, Beijing, p. 299.
  15. Shapiro, A. H., 1953, The Dynamics and Thermodynamics of Compressible Fluid Flow Vol. I, Ronald Press Co., New York, pp. 379-384.