References
- P. Baird and J. C. Wood, Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press, Oxford, 2003.
- D. E. Blair, Contact Manifolds in Riemannian Geometry, Lectures Notes in Mathematics 509, Springer-Verlag, Berlin, 1976.
- J. P. Bourguignon and H. B. Lawson, Stability and isolation phenomena for Yang-mills fields, Comm. Math. Phys. 79 (1981), no. 2, 189-230. https://doi.org/10.1007/BF01942061
- J. P. Bourguignon and H. B. Lawson, Mathematician's visit to Kaluza-Klein theory, Rend. Sem. Mat. Univ. Politec. Torino (1989), Special Issue, 143-163.
- J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. Fernandez, Slant submanifolds in Sasakian Manifolds, Glasg. Math. J. 42 (2000), no. 1, 125-138. https://doi.org/10.1017/S0017089500010156
- B. Y. Chen, Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Leuven, 1990.
- D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo (2) 34 (1985), no. 1, 89-104. https://doi.org/10.1007/BF02844887
- R. H. Escobales Jr., Riemannian submersions with totally geodesic fibers, J. Differential Geom. 10 (1975), 253-276.
- A. Gray, Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
- S. Ianus, A. M. Ionescu, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from almost contact metric manifolds, arXiv: 1102.1570v1 [math. DG]. https://doi.org/10.1007/s12188-011-0049-0
- S. Ianus, R. Mazzocco, and G. E. Vilcu, Riemannian submersions from quaternionic manifolds, Acta Appl. Math. 104 (2008), no. 1, 83-89. https://doi.org/10.1007/s10440-008-9241-3
- S. Ianus and M. Visinescu, Kaluza-Klein theory with scalar fields and generalized Hopf manifolds, Class. Quantum Gravity 4 (1987), 1317-1325. https://doi.org/10.1088/0264-9381/4/5/026
- S. Ianus and M. Visinescu, Space-time compactification and Riemannian submersions, In: Rassias, G.(ed.) The Mathematical Heritage of C. F. Gauss, (1991), 358-371, World Scientific, River Edge.
- B. H. Kim, Fibred Riemannian spaces with quasi Sasakian structure, Hiroshima Math. J. 20 (1990), no. 3, 477-513.
- I. Kupeli Erken and C. Murathan, Slant Riemannian submersions from Sasakian manifolds, arXiv: 1309.2487v1 [math. DG].
- G. D. Ludden, Submanifolds of cosymplectic manifolds, J. Differential Geom. 4 (1970), 237-244.
- C. Murathan and I. Kupeli Erken, Anti-invariant Riemannian submersions from cosymplectic manifolds, arXiv:1302.5108v1 [math. DG].
- M. T. Mustafa, Applications of harmonic morphisms to gravity, J. Math. Phys. 41 (2000), no. 10, 6918-6929. https://doi.org/10.1063/1.1290381
- Z. Olszak, On almost cosymplectic manifolds, Kodai Math. J. 4 (1981), no. 2, 239-250. https://doi.org/10.2996/kmj/1138036371
- B. O'Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459-469. https://doi.org/10.1307/mmj/1028999604
- B. O'Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York-London 1983.
- K. S. Park, H-slant submersions, Bull. Korean Math. Soc. 49 (2012), no. 2, 329-338. https://doi.org/10.4134/BKMS.2012.49.2.329
- K. S. Park, H-semi-invariant submersions, Taiwanese J. Math. 16 (2012), no. 5, 1865-1878.
- B. Sahin, Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. Eur. J. Math. 8 (2010), no. 3, 437-447. https://doi.org/10.2478/s11533-010-0023-6
- B. Sahin, Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie (N.S) 54(102) (2011), no. 1, 93-105.
- B. Sahin, Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math. 17 (2013), no. 2, 629-659.
- B. Sahin, Semi-invariant submersions from almost Hermitian manifolds, Canad. Math. Bull. 56 (2013), no. 1, 173-183. https://doi.org/10.4153/CMB-2011-144-8
- H. M. Tastan, On Lagrangian submersion, arXiv: 1311.1676v1 [math. DG].
- B. Watson, Almost Hermitian submersions, J. Differential Geom. 11 (1976), no. 1, 147-165.
- B. Watson, G, G'-Riemannian submersions and nonlinear gauge field equations of general relativity, In: Rassias, T. (ed.) Global Analysis-Analysis on manifolds, dedicated M. Morse, 324-349, Teubner-Texte Math., 57, Teubner, Leipzig, 1983.
- D. W. Yoon, Inequality for Ricci curvature of slant submanifolds in cosymplectic space forms, Turkish J. Math. 30 (2006), no. 1, 43-56.
Cited by
- Conformal semi-invariant submersions vol.19, pp.02, 2017, https://doi.org/10.1142/S0219199716500115
- Conformal semi-slant submersions vol.14, pp.07, 2017, https://doi.org/10.1142/S0219887817501146
- Semi-invariant submersions whose total manifolds are locally product Riemannian 2017, https://doi.org/10.2989/16073606.2017.1335657
- On anti-invariant Riemannian submersions whose total manifolds are locally product Riemannian vol.108, pp.2, 2017, https://doi.org/10.1007/s00022-016-0347-x