DOI QR코드

DOI QR Code

Preparation and Characterization of Poly(phenylene sulfide)-Functionalized MWNTs

폴리(페닐렌 설파이드)로 기능화된 다중벽 탄소나노튜브의 제조와 특성분석

  • Hong, Sung Yeon (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Kim, Young Ho (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 홍성연 (숭실대학교 유기신소재.파이버공학과) ;
  • 김영호 (숭실대학교 유기신소재.파이버공학과)
  • Received : 2014.05.01
  • Accepted : 2014.06.19
  • Published : 2014.11.25

Abstract

4-Chlorobenzoyl (CB) group-attached multi-walled carbon nanotube (c-MWNT) was prepared via a direct Friedel-Crafts acylation of MWNT with 4-chlorobenzoic acid (CBA) in a $P_2O_5$/poly(phosphoric acid) medium. c-MWNT with a maximum chlorine content of 5.3 wt% (CB group content of 20.9 wt%) was obtained by controlling the amount of CBA during the reaction. Using a self-condensation polymerization of 4-chlorobenzenethiol (CBT) to poly(phenylene sulfide) (PPS), MWNT-g-PPS was prepared by adding c-MWNT of chlorine content of 5.3 wt% during the self-polymerization of CBT and removing homo PPS after polymerization in order to increase the interfacial interaction between PPS and MWNT. Thermal and surface properties of the MWNT-g-PPS were characterized. The results showed that PPS was formed on the surface of c-MWNT by the condensation of c-MWNT and CBT.

Friedel-Crafts 직접 아실화 반응을 이용하여 $P_2O_5$/폴리인산 매질에서 다중벽 탄소나노튜브(MWNT)와 4-클로로벤조산(CBA)을 반응시켜 클로로벤조일(CB)기가 도입된 MWNT(c-MWNT)를 제조하였다. 이때 반응시키는 CBA양을 조절하여 염소원자 함량이 최대 5.3 wt%(CB기 함량 20.86 wt%)인 c-MWNT를 얻었다. 한편, 열가소성 엔지니어링 플라스틱 소재인 폴리(페닐렌 설파이드) (PPS)와 MWNT의 계면접착력을 증가시키기 위하여, 4-클로로벤젠티올(CBT)의 자기축합에 의한 PPS 중합시 c-MWNT를 함께 넣고 중합시킨 후 호모 PPS를 제거하여 MWNT-g-PPS를 얻었다. 이 MWNT-g-PPS의 열 및 표면 특성들을 분석하였으며, c-MWNT와 CBT가 반응하여 c-MWNT 표면에 PPS가 생성되었음을 확인하였다.

Keywords

References

  1. K. Sasikumar, N. R. Manoj, T. Mukundan, and D. Khastgir, J. Appl. Polym. Sci., 131, 40752 (2014).
  2. Z. Spitalsky, D. Tasis, K. Papagelis, and C. Galiotis, Prog. Polym. Sci., 35, 357 (2010). https://doi.org/10.1016/j.progpolymsci.2009.09.003
  3. G. Zhang, S. Sun, D. Yang, J. P. Dodelet, and E. Sacher, Carbon, 46, 196 (2008). https://doi.org/10.1016/j.carbon.2007.11.002
  4. G. Jun, C. W. Nah, M. K. Seo, J. H. Byun, K. H. Lee, and S. J. Park, Polymer(Korea), 36, 612 (2012).
  5. S. H. Choi, Y. J. Jeong, G. W. Lee, and D. H. Cho, Fib. Polym., 10, 513 (2009). https://doi.org/10.1007/s12221-009-0513-y
  6. D. Ragupathy, J. J. Park, S. C. Lee, J. C. Kim, P. Gomathi, M. K. Kim, S. M. Lee, H. D. Ghim, A. Rajendran, S. H. Lee, and K. M. Jeon, Macromol. Res., 19, 764 (2011). https://doi.org/10.1007/s13233-011-0802-3
  7. D. J. Chung, K. C. Kim, and S. H. Choi, Polymer(Korea), 36, 470 (2012).
  8. J. C. Zhao, F. P. Du, X. P. Zhou, W. Cui, X. M. Wang, H. Zhu, X. L. Xie, and Y. W. Mai, Composites Part B, 42, 2111 (2011). https://doi.org/10.1016/j.compositesb.2011.05.005
  9. R. B. Seymour and G. S. Kirshenbaum, High Performance Polymers: Their Origin and Development, Elsevier Sci. Publ. Co., New York, USA, 1986.
  10. A. Noll, K. Friedrich, T. Burkhart, and U. Breuer, Polym. Compos., 34, 1405 (2013). https://doi.org/10.1002/pc.22427
  11. H. T Oyama, M. Matsushita, and M. Furuta, Polym. J., 43, 991 (2011). https://doi.org/10.1038/pj.2011.106
  12. J. X. Wan, Y. F. Qin, S. B. Li, and X. H. Wang, Adv. Mater. Res., 332, 1045 (2011).
  13. A. P. Gies, J. F. Geibel, and D. M. Hercules, Macromolecules, 43, 943 (2010). https://doi.org/10.1021/ma902117u
  14. Y. Ding and A. S. Hay, Macromolecules, 30, 5612 (1997). https://doi.org/10.1021/ma970395f
  15. I. Y. Jeon, H. J. Lee, Y. S. Choi, L. S. Tan, and J. B. Baek, Macromolecules, 41, 7423 (2008). https://doi.org/10.1021/ma801259b
  16. G. J. Shugar and J. T. Ballinger, Chemical Technicians's Ready Reference Handbook, McGraw-Hill Inc., 1990.
  17. D. H. Lim, C. B. Lyons, L. S. Tan, and J. B. Beak, J. Phys. Chem. C, 112, 12188 (2008). https://doi.org/10.1021/jp801772r
  18. J. B. Baek, C. B. Lyons, and L. S. Tan, Macromolecules, 37, 8278 (2004). https://doi.org/10.1021/ma048964o
  19. H. J. Lee, S. W. Han, Y. D. Kwon, L. S. Tan, and J. B. Baek, Carbon, 46, 1850 (2008). https://doi.org/10.1016/j.carbon.2008.07.027
  20. Y. S. Shim, B. G. Min, and S. J. Park, Macromol. Res., 20, 540 (2012). https://doi.org/10.1007/s13233-012-0076-4
  21. G. Freihofer, F. Liang, B. Mohan, J. Gou, and S. Raghavan, Int. J. Smart Nano Mater., 3, 309 (2012). https://doi.org/10.1080/19475411.2011.652991
  22. Y. S. Park, G. H. Kim, S. C. Lee, S. G. Han, and Y. H. Cha, Polymer(Korea), 16, 687 (1992).
  23. V. Parthasarathy, B. Sundaresan, V. Dhanalakshmi, and R. Anbarasan, Polym. Eng. Sci., 50, 474 (2009).
  24. J. E. Mark, Polymer Data Handbook, Oxford University Press, New York, 2009.
  25. J. S. Ling, G. X. Yu, and Z. Z. Yuan, J. Appl. Polym. Sci., 127, 224 (2013). https://doi.org/10.1002/app.37870