DOI QR코드

DOI QR Code

연직구조물에 작용하는 고립파 파력 특성에 관한 실험

Laboratory Experiments for Solitary Wave Force on Vertical Structures

  • 한세종 (한양대학교 일반대학원 건설환경공학과) ;
  • 서규학 (한양대학교 일반대학원 건설환경공학과) ;
  • 조용식 (한양대학교 공과대학 건설환경공학과)
  • Han, Sejong (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Seo, Gyu-Hak (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Cho, Yong-Sik (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2014.07.08
  • 심사 : 2014.10.16
  • 발행 : 2014.11.30

초록

본 연구는 고립파를 이용하여 수중에 설치된 연직구조물에 작용하는 지진해일 파력 측정 수리실험을 수행하였다. 다수의 파압계를 이용하여 구조물에 작용하는 파압분포를 측정하였고 측정된 파압분포를 통해 파력을 산출하였다. 측정된 실험결과를 바탕으로 해안구조물 설계에 사용되는 파압예측 경험식과 비교하였고 구조물 단면현상에 따라 파압분포의 차이를 분석하였다. 또한, 구조물 전 후면에서 파고측정을 통해 입사파와 투과파를 비교하였으며 구조물의 형상이 파고변화에 미치는 영향을 분석하였다.

In this study, a series of hydraulic experiments are conducted to measure wave pressure on vertical structures with incident solitary waves that well represent characteristics of tsunamis. The pressure transducers measure time histories of wave pressure according to wave height to see pressure distribution. The force of incident solitary wave is estimated from integrated pressure distributions and represented with square and cylindrical columns. Experimental measurements are compared with the predictions of existing empirical formulas frequently used to design of coastal structures.

키워드

참고문헌

  1. Bisgard, C. (2005). Breaking and non-breaking solitary wave impact pressures on a cylinder over a 3-D bathymetry. M.S. Thesis, Oregon State University, USA.
  2. Cooker, M.J., Weidman, P.D., and Bale, D.S. (1997). "Reflection of a high-amplitude solitary wave at a vertical wall." Journal of Fluid Mechanics, Vol. 342, pp. 141-158. https://doi.org/10.1017/S002211209700551X
  3. FEMA (2008). Guidelines for design of structures for vertical evacuation from tsunamis. FEMA P646 Report, Federal Emergency Management Agency.
  4. Goda, Y. (1985). Random seas and design of maritime structures. University of Tokyo Press.
  5. Goda, Y., and Suzuki, Y. (1976). "Estimation of incident and reflected waves in random wave experiments." Proceedings of 15th International Conference on Coastal Engineering, Vol. 1, pp. 825-845.
  6. Goring, D.G. (1978). Tsunamis-the propagation of long waves onto a shelf. Rep. No. KH-R-38, W.M. Keck Laboratory of Hydrodynamics and Water Resources, California Institute of Technology, USA.
  7. Hall, J.V., and Watts, J.W. (1953). Laboratory Investigation of the Vertical Rise of SolitaryWaves on Impermeable Slopes. Washington, D.C.: U.S. Army, Coastal Engineering Research Center.
  8. Hsu, H.-C., Chen, Y.-Y., and Hwung, H.-H. (2012). "Experimental study of the particle paths in solitary water waves." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 370. pp. 1629-1637. https://doi.org/10.1098/rsta.2011.0445
  9. Huang, C.-J., and Dong, C.-M. (2001). "On the interaction of a solitary wave and a submerged dike." Coastal Engineering, Vol. 43, pp. 265-286. https://doi.org/10.1016/S0378-3839(01)00017-5
  10. Jeon, C.H., Lee, B.H., and Cho, Y.-S. (2002). "Characteristics of solitary waves acting on slopes." Journal of the Korea Water Resources Association, Vol. 35, No. 6, pp. 779-786. https://doi.org/10.3741/JKWRA.2002.35.6.779
  11. Lee, K.H., Choi, H.S., Kim, C.H., Kim, D.S., and Cho, S. (2011). "The study on the wave pressure of the tsunami acting on the permeable structure." Journal of Korean Society of Coastal and Ocean Engineers, Vol. 23, No. 1, pp. 79-92. https://doi.org/10.9765/KSCOE.2011.23.1.079
  12. Liu, P.L.-F., and Al-banaa, K. (2004). "Solitary wave runup and force on a vertical barrier." Journal of Fluid Mechanics, Vol. 505, pp. 225-233. https://doi.org/10.1017/S0022112004008547
  13. Liu, P.L.-F., and Cho, Y.-S. (1994). "Integral equation model for wave propagation with bottom frictions." Journal ofWaterway, Port, Coastal, and Ocean Engineering, Vol. 120, No. 6, pp. 594-608. https://doi.org/10.1061/(ASCE)0733-950X(1994)120:6(594)
  14. Ministry of Oceans and Fisheries (2005). Harbor and Fishery Design Criteria, pp. 186-187.
  15. Mo, W., and Liu, P.L.-F. (2009). "Three dimensional numerical simulations for non-breaking solitary wave interacting with a group of slender vertical cylinders." International Journal of Naval Achitecture and Ocean Egineering, Vol. 1 pp. 20-28. https://doi.org/10.3744/JNAOE.2009.1.1.020
  16. Mo, W., Irschik, K., Oumeraci, H., and Liu, P.L.-F. (2007). "A 3D numerical model for computing nonbreaking wave forces on slender piles." Journal of Engineering Mathematics, Vol. 58, pp. 19-30. https://doi.org/10.1007/s10665-006-9094-6
  17. Nouri, Y., Nistor, I., and Palermo, D. (2010). "Experimental investigation of tsunami impact on free standing structures." Coastal Engineering Journal, Vol. 52, No. 1, pp. 43-70. https://doi.org/10.1142/S0578563410002117
  18. Synolakis, C.E. (1987). "The run-up of solitary waves." Journal of Fluid Mechanics, Vol. 18, pp. 523-545.
  19. Takahashi, S. (1996). Design of vertical breakwaters. Port and Harbour Research Institute, Japan
  20. Tanimoto, K., Tsuruya, K., and Nakano, S. (1984). "Tsunami force of Nihonkai-Chubu Earthquake in 1983 and cause of revetment damage." Proceedings of the 31st Japanese Conference on Coastal Engineering, JSCE.
  21. Yeh, H. (1991). "Tsunami bore run up." Natural Hazards, Vol. 4, pp. 209-220. https://doi.org/10.1007/BF00162788