References
- Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle, B. N. Petrov, F. Csaki (Eds.), Proceedings of the 2nd International Symposium on Information Theory, Akademiai Kiado, Budapest, 267-281.
- Arroyo, J., Gonzalez-Rivera, G. and Mate, C. (2009). Forecasting with interval and histogram data, Some financial applications, Handbook of Empirical Economics and Finance, Aman Ullah and David E. A. Giles, eds. Chapman and Hall/CRC 2010, 247-279.
- Billard, L. (2008). Some analyses of interval data, Journal of Computing and Information Technology, 4, 225-233.
- Billard, L. and Diday, E. (2000). Regression Analysis for Interval-Valued Data, in Data Analysis, Classification, and Related Methods, Studies in Classification, Data Analysis, and Knowledge Organization, eds. H. A. L. Kiers, J. P. Rassoon, P. J. F. Groenen and M. Schader, Springer-Verlag, Berlin, 369-374.
- Chen, K., Jayaprakash, C. and Yuan, B. (2005). Conditional probability as a measure of volatility clustering in financial time series, http://arxiv.org/pdf/physics/0503157v2.pdf.
- Diday, E. and Noirhomme-Fraiture, M. (2008). Symbolic Data Analysis and the SODAS Software, Wiley-Interscience.
- Giordani, P. (2011). Linear regression analysis for interval-valued data based on the Lasso technique, Proceeding of 58th World Statistical Congress, Dublin, 5576-5581.
- Goswamil, M. M., Bhensdadia, C. K. and Ganatra, A. P. (2009). Candlestick analysis based short term prediction of stock price fluctuation using SOM-CBR, 2009 IEEE International Advance Computing Conference, 1448-1452.
- Hansen, J. M. and Nelson, R. D. (2003). Time-series analysis with neural networks and ARIMA-neural network hybrids, Journal of Experimental & Theoretical Artificial Intelligence, 15, 315-330. https://doi.org/10.1080/0952813031000116488
- Lima Neto, E. A., De Carvalho, F. A. T. and Bezerra, L. X. T. (2006). Linear regression methods to predict interval-valued Data, Neural Networks, SBRN '06. Ninth Brazilian Symposium on, 125-130 .
- Lima Neto, E. A., De Carvalho, F. A. T. (2008). Centre and range method for fitting a linear regression model on symbolic interval data, Computational Statistic Data Analysis, 52, 1500-1515. https://doi.org/10.1016/j.csda.2007.04.014
- Lima Neto, E. A. and De Carvalho, F. A. T. (2010). Constrained linear regression models for symbolic interval-valued variables, Computational Statistic Data Analysis, 54, 333-347. https://doi.org/10.1016/j.csda.2009.08.010
- Maia, A. L. S., De Carvalho, F. A. T. and Ludermir, T. B. (2008). Forecasting models for interval-valued time series, Neurocomputing, 71, 3344-3352. https://doi.org/10.1016/j.neucom.2008.02.022
- Noirhomme-Fraiture, M. and Brito, P. (2011). Far beyond the classical data models: Symbolic data analysis, Statistical Analysis and Data Mining: The ASA Data Science Journal, 4, 157-170. https://doi.org/10.1002/sam.10112
- Park, H. and Sakaori, F. (2013). Lag weighted lasso for time series models, Computational Statistics, 28, 493-504. https://doi.org/10.1007/s00180-012-0313-5
- Wei, W. W. S. (2005). Time Series Analysis: Univariate and Multivariate Methods, Addison Wesley, New York.
- Zhang, G. P. (2001). Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 159-175.