DOI QR코드

DOI QR Code

Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes

  • Jeong, Yeon-Hui (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School) ;
  • Park, Jin-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School) ;
  • Kim, Dong-Hyun (Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University) ;
  • Kim, Hee-Sun (Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School)
  • Received : 2014.10.17
  • Accepted : 2014.11.05
  • Published : 2014.11.30

Abstract

In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.

Keywords

References

  1. Chen, J. H., Huang, S. M., Tan, T. W., Lin, H. Y., Chen, P. Y., Yeh, W. L., Chou, S. C., Tsai, C. F., Wei, I. H. and Lu, D. Y. (2012) Berberine induces heme oxygenase-1 up-regulation through phosphatidylinositol 3-kinase/AKT and NF-E2-related factor-2 signaling pathway in astrocytes. Int. Immunopharmacol. 12, 94-100. https://doi.org/10.1016/j.intimp.2011.10.019
  2. Cho, M. K., Jang, Y. P., Kim, Y. C. and Kim, S. G. (2004) Arctigenin, a phenylpropanoid dibenzylbutyrolactone lignan, inhibits MAP kinases and AP-1 activation via potent MKK inhibition: the role in TNF-alpha inhibition. Int. Immunopharmacol. 4, 1419-1429. https://doi.org/10.1016/j.intimp.2004.06.011
  3. Dallerac, G., Chever, O. and Rouach, N. (2013) How do astrocytes shape synaptic transmission? Insights from electrophysiology. Front. Cell. Neurosci. 7, 159.
  4. de Vries, H. E., Witte, M., Hondius, D., Rozemuller, A. J., Drukarch, B., Hoozemans, J. and van Horssen, J. (2008) Nrf2-induced antioxidant protection: a promising target to counteract ROS-mediated damage in neurodegenerative disease? Free Radic. Biol. Med. 45, 1375-1383. https://doi.org/10.1016/j.freeradbiomed.2008.09.001
  5. Fan, T., Jiang, W. L., Zhu, J. and Feng Zhang, Y. (2012) Arctigenin protects focal cerebral ischemia-reperfusion rats through inhibiting neuroinflammation. Biol. Pharm. Bull. 35, 2004-2009. https://doi.org/10.1248/bpb.b12-00463
  6. Huang, S. L., Yu, R. T., Gong, J., Feng, Y., Dai, Y. L., Hu, F., Hu, Y. H., Tao, Y. D. and Leng, Y. (2012) Arctigenin, a natural compound, activates AMP-activated protein kinase via inhibition of mitochondria complex I and ameliorates metabolic disorders in ob/ob mice. Diabetologia 55, 1469-1481. https://doi.org/10.1007/s00125-011-2366-3
  7. Hyam, S. R., Lee, I. A., Gu, W., Kim, K. A., Jeong, J. J., Jang, S. E., Han, M. J. and Kim, D. H. (2013) Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages. Eur. J. Pharmacol. 708, 21-29. https://doi.org/10.1016/j.ejphar.2013.01.014
  8. Jang, Y. P., Kim, S. R., Choi, Y. H., Kim, J., Kim, S. G., Markelonis, G. J., Oh, T. H. and Kim, Y. C. (2002) Arctigenin protects cultured cortical neurons from glutamate-induced neurodegeneration by binding to kainate receptor. J. Neurosci. Res. 68, 233-240. https://doi.org/10.1002/jnr.10204
  9. Jung, J. S., Shin, J. A., Park, E. M., Lee, J. E., Kang, Y. S., Min, S. W., Kim, D. H., Hyun, J. W., Shin, C. Y. and Kim, H. S. (2010) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J. Neurochem. 115, 1668-1680. https://doi.org/10.1111/j.1471-4159.2010.07075.x
  10. Kou, X., Qi, S., Dai, W., Luo, L. and Yin, Z. (2011) Arctigenin inhibits lipopolysaccharide-induced iNOS expression in RAW264.7 cells through suppressing JAK-STAT signal pathway. Int. Immunopharmacol. 11, 1095-1102. https://doi.org/10.1016/j.intimp.2011.03.005
  11. Lee, E. J. and Kim, H. S. (2011) Inhibitory mechanism of MMP-9 gene expression by ethyl pyruvate in lipopolysaccharide-stimulated BV2 microglial cells. Neurosci. Lett. 493, 38-43. https://doi.org/10.1016/j.neulet.2011.02.016
  12. Lee, J. M., Li, J., Johnson, D. A., Stein, T. D., Kraft, A. D., Calkins, M. J., Jakel, R. J. and Johnson, J. A. (2005) Nrf2, a multi-organ protector? FASEB J. 19, 1061-1066. https://doi.org/10.1096/fj.04-2591hyp
  13. Lee, J. S. and Surh, Y. J. (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett. 224, 171-184. https://doi.org/10.1016/j.canlet.2004.09.042
  14. Li, D., Liu, Q., Jia, D., Dou, D., Wang, X. and Kang, T. (2014) Protective effect of arctigenin against MPP+ and MPTP-induced neurotoxicity. Planta Med. 80, 48-55. https://doi.org/10.1055/s-0033-1360171
  15. Li, M. H., Cha Y. N. and Surh Y. J. (2006) Peroxynitrite induces HO-1 expression via PI3K/Akt-dependent activation of NF-E2-related factor 2 in PC12 cells. Free Radic. Biol. Med. 41, 1079-1091. https://doi.org/10.1016/j.freeradbiomed.2006.06.010
  16. Lim, J. H., Kim, K. M., Kim, S. W., Hwang, O. and Choi, H. J. (2008) Bromocriptine activates NQO1 via Nrf2-PI3K/Akt signaling: novel cytoprotective mechanism against oxidative damage. Pharmacol. Res. 57, 325-331. https://doi.org/10.1016/j.phrs.2008.03.004
  17. Martin, D., Rojo, A. I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., De, Galarreta, C.M. and Cuadrado, A. (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/ Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J. Biol. Chem. 279, 8919-8929. https://doi.org/10.1074/jbc.M309660200
  18. Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology. Toxicology 153, 83-104. https://doi.org/10.1016/S0300-483X(00)00306-1
  19. Otterbein, L. E., Soares, M. P., Yamashita, K. and Bach, F. H. (2003) Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol. 24, 449-455. https://doi.org/10.1016/S1471-4906(03)00181-9
  20. Park, J. H., Hong, Y. J., Moon E., Kim S. A., and Kim, S. Y. (2011a) Forsythiae fructus and its active component, arctigenin, provide neuroprotection by inhibiting neuroinflammation. Biomol. Ther. 19, 425-430. https://doi.org/10.4062/biomolther.2011.19.4.425
  21. Park, J. S., Jung, J. S., Jeong, Y. H., Hyun, J. W., Le, T. K., Kim, D. H., Choi, E. C. and Kim, H. S. (2011b) Antioxidant mechanism of isoflavone metabolites in hydrogen peroxide-stimulated rat primary astrocytes: critical role of hemeoxygenase-1 and NQO1 expression. J. Neurochem. 119, 909-919. https://doi.org/10.1111/j.1471-4159.2011.07395.x
  22. Park, J. S. and Kim, H. S. (2014) Regulation of hemeoxygenase-1 gene expression by Nrf2 and c-Jun in tertiary butylhydroquinonestimulated rat primary astrocytes. Biochem. Biophys. Res. Commun. 447, 672-677. https://doi.org/10.1016/j.bbrc.2014.04.073
  23. Park, J. S., Woo, M. S., Kim, D. H., Hyun, J. W., Kim, W. K., Lee, J. C. and Kim, H. S. (2007) Anti-inflammatory mechanisms of isoflavone metabolites in lipopolysaccharide-stimulated microglial cells. J. Pharmacol. Exp. Ther. 320, 1237-1245. https://doi.org/10.1124/jpet.106.114322
  24. Ryter, S. W., Alam, J. and Choi, A. M. (2006) Heme oxygenase-1/carbon monoxide: from basic science to therapeutic applications. Physiol. Rev. 86, 583-650. https://doi.org/10.1152/physrev.00011.2005
  25. Shi, X., Sun, H., Zhou, D., Xi, H. and Shan, L. (2014) Arctigenin attenuates lipopolysaccharide-induced acute lung injury in rats. Inflammation [Epub ahed of print]
  26. Surh Y. J. (2003) Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780. https://doi.org/10.1038/nrc1189
  27. Syapin, P. J. (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br. J. Pharmacol. 155, 623-640.
  28. Vargas, M. R. and Johnson, J. A. (2009) The Nrf2-ARE cytoprotective pathway in astrocytes. Expert Rev. Mol. Med. 11, e17. https://doi.org/10.1017/S1462399409001094
  29. Wang, H. Q., Xu, Y. X. and Zhu, C. Q. (2012) Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotox. Res. 21, 368-378. https://doi.org/10.1007/s12640-011-9292-5
  30. Woo, M. S., Jang, P. G., Park, J. S., Kim, W. K., Joh, T. H. and Kim, H. S. (2003) Selective modulation of lipopolysaccharide-stimulated cytokine expression and mitogen-activated protein kinase pathways by dibutyryl-cAMP in BV2 microglial cells. Brain Res. Mol. Brain Res. 113, 86-96. https://doi.org/10.1016/S0169-328X(03)00095-0
  31. Wu, R. M., Sun, Y. Y., Zhou, T. T., Zhu, Z. Y., Zhuang, J. J., Tang, X., Chen, J., Hu, L. H. and Shen, X. (2014) Arctigenin enhances swimming endurance of sedentary rats partially by regulation of antioxidant pathways. Acta Pharmacol. Sin. 35, 1274-1284. https://doi.org/10.1038/aps.2014.70
  32. Zhu, Z., Yan, J., Jiang, W., Yao, X. G., Chen, J., Chen, L., Li, C., Hu, L., Jiang, H. and Shen, X. (2013) Arctigenin effectively ameliorates memory impairment in Alzheimer's disease model mice targeting both beta-amyloid production and clearance. J. Neurosci. 33, 13138-13149. https://doi.org/10.1523/JNEUROSCI.4790-12.2013

Cited by

  1. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes vol.289, pp.2, 2015, https://doi.org/10.1016/j.taap.2015.09.009
  2. Arctigenin induced gallbladder cancer senescence through modulating epidermal growth factor receptor pathway vol.39, pp.5, 2017, https://doi.org/10.1177/1010428317698359
  3. Arctigenin, a Potent Ingredient ofArctium lappaL., Induces Endothelial Nitric Oxide Synthase and Attenuates Subarachnoid Hemorrhage-Induced Vasospasm through PI3K/Akt Pathway in a Rat Model vol.2015, 2015, https://doi.org/10.1155/2015/490209
  4. Arctigenin suppresses transforming growth factor-β1-induced expression of monocyte chemoattractant protein-1 and the subsequent epithelial–mesenchymal transition through reactive oxygen species-dependent ERK/NF-κB signaling pathway in renal tubular epithelial cells vol.49, pp.9, 2015, https://doi.org/10.3109/10715762.2015.1038258
  5. Evaluation on the antiviral activity of arctigenin against spring viraemia of carp virus 2017, https://doi.org/10.1016/j.aquaculture.2017.09.001
  6. Short-chain C2 ceramide induces heme oxygenase-1 expression by upregulating AMPK and MAPK signaling pathways in rat primary astrocytes vol.94, 2016, https://doi.org/10.1016/j.neuint.2016.02.004
  7. The antitumor function of arctigenin in human retinoblastoma cells is mediated by jagged-1 vol.19, pp.5, 2014, https://doi.org/10.3892/mmr.2019.10026
  8. Heme, Heme Oxygenase, and Endoplasmic Reticulum Stress-A New Insight into the Pathophysiology of Vascular Diseases vol.20, pp.15, 2014, https://doi.org/10.3390/ijms20153675
  9. CBX7 suppression prevents ischemia-reperfusion injury-induced endoplasmic reticulum stress through the Nrf-2/HO-1 pathway vol.318, pp.6, 2020, https://doi.org/10.1152/ajprenal.00088.2020
  10. Arctigenin alleviates cadmium-induced nephrotoxicity: Targeting endoplasmic reticulum stress, Nrf2 signaling, and the associated inflammatory response vol.287, pp.None, 2014, https://doi.org/10.1016/j.lfs.2021.120121