DOI QR코드

DOI QR Code

Non-Thermal Atmospheric-Pressure Plasma Possible Application in Wound Healing

  • Haertel, Beate (Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald) ;
  • von Woedtke, Thomas (Leibniz Institute of Plasma Science and Technology Greifswald e.V (INP)) ;
  • Weltmann, Klaus-Dieter (Leibniz Institute of Plasma Science and Technology Greifswald e.V (INP)) ;
  • Lindequist, Ulrike (Department of Pharmaceutical Biology, Institute of Pharmacy, Ernst-Moritz-Arndt University of Greifswald)
  • Received : 2014.09.24
  • Accepted : 2014.11.10
  • Published : 2014.11.30

Abstract

Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

Keywords

References

  1. Alkawareek, M. Y., Algwari, Q. T., Laverty, G., Gorman, S. P., Graham, W. G., O'Connell, D. and Gilmore, B. F. (2012) Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure nonthermal plasma. PLoS One 7, e44289. https://doi.org/10.1371/journal.pone.0044289
  2. Alkawareek, M. Y., Gorman, S. P., Graham, W. G. and Gilmore, B. F. (2014) Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma. Int. J. Antimicrob. Agents 43, 154-60. https://doi.org/10.1016/j.ijantimicag.2013.08.022
  3. Arjunan, K. P. and Clyne, A. M. (2011a) A nitric oxide producing pin-tohole spark discharge plasma enhances endothelial cell proliferation and migration. Plasma Med. 1, 279-293. https://doi.org/10.1615/PlasmaMed.2012006389
  4. Arjunan, K. P. and Clyne, A. M. (2011b) Hydroxyl radical and hydrogen peroxide are primarily responsible for dielectric barrier discharge plasma-induced angiogenesis. Plasma Process. Polym. 8, 1154-1164. https://doi.org/10.1002/ppap.201100078
  5. Arjunan, K. P., Friedman G., Fridman A. and Clyne A. M. (2012) Nonthermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J. R. Soc. Interface 9, 147-157. https://doi.org/10.1098/rsif.2011.0220
  6. Arndt, S., Wacker, E., Li, Y. F., Shimizu,T., Thomas, H. M., Morfill, G. E., Karrer, S., Zimmermann, J.L. and Bosserhoff, A.K. (2013) Cold atmospheric plasma, a new strategy to induce senescence in melanoma cells. Exp. Dermatol. 22, 284-289. https://doi.org/10.1111/exd.12127
  7. Barton A. (2013) Impact of non-thermal plasma on cell signaling in keratinocytes, Doctoral Thesis, Ernst-Moritz-Arndt-University of Greifswald, Germany.
  8. Bekeschus, S., Kolata, J., Muller, A., Kramer, A., Weltmann, K. P., Broker, B. and Masur, K. (2013a) Differential viability of eight human blood mononuclear cell subpopulations after plasma treatment. Plasma Med. 3, 1-13. https://doi.org/10.1615/PlasmaMed.2014008450
  9. Bekeschus, S., Kolata, J., Winterbourn, C., Kramer, A., Turner, R., Weltmann, K. D., Broker, B. and Masur, K. (2014) Hydrogen peroxide: A central player in physical plasma-induced oxidative stress in human blood cells. Free Radic. Res. 48, 542-549. https://doi.org/10.3109/10715762.2014.892937
  10. Bekeschus, S., Masur, K., Kolata, J., Wende, K., Schmidt, A., Bundscherer, L., Barton, A., Kramer, A., Broker, B. and Weltmann, K. D. (2013b) Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process. Polym. 10, 706-713. https://doi.org/10.1002/ppap.201300008
  11. Bialoszewski, D. and Kowalewski, M. (2003) Superficially, longer, intermittent ozone therapy in the treatment of the chronic, infected wounds. Ortop. Traumatol. Rehabil. 5, 652-658.
  12. Blackert, S., Haertel, B., Wende, K., von Woedtke, T. and Lindequist, U. (2013) Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (Ha-CaT). J. Dermatol. Sci. 70, 173-181. https://doi.org/10.1016/j.jdermsci.2013.01.012
  13. Bocci, V., Borrelli, E., Travagli V. and Zanardi, I. (2009) The ozone paradox: ozone is a strong oxidant as well as a medical drug. Med. Res. Rev. 29, 646-682. https://doi.org/10.1002/med.20150
  14. Boukamp, P., Petrussevska, R. T., Breitkreutz, D., Hornung, J., Markham A. and Fusenig, N. E. (1988) Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 106, 761-771. https://doi.org/10.1083/jcb.106.3.761
  15. Brehmer, F., Haenssle, H. A., Daeschlein, G., Ahmed, R., Pfeiffer, S., Gorlitz, A., Simon, D., Schon, M.P., Wandke, D. and Emmert, S. (2014) Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm$^{(R)}$ VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J. Eur. Acad. Dermatol. Venereol., in press, DOI: 10.1111/jdv.12490.
  16. Brun, P., Vono, M., Venier, P., Tarricone, E., Deligianni, V., Martines, E., Zuin, M., Spagnolo, S., Cavazzana, R., Cardin, R., Castagliuolo, I., La Gloria Valerio, A. and Leonardi, A. (2012) Disinfection of ocular cells and tissues by atmospheric-pressure cold plasma. PLoS One 7, e33245. https://doi.org/10.1371/journal.pone.0033245
  17. Bundscherer, L., Bekeschus, S., Tresp H., Hasse, S., Reuter, S., Weltmann, K. D., Lindequist, U. and Masur, K. (2013a) Viability of human blood leucocytes compared with their respective cell lines after plasma treatment. Plasma Med. 3, 71-80. https://doi.org/10.1615/PlasmaMed.2013008538
  18. Bundscherer, L., Wende, K., Ottmüller, K., Barton, A., Schmidt, A.,Bekeschus,S., Hasse, S., Weltmann, K. D., Masur, K. and Lindequist,U. (2013b) Impact of non-thermal plasma treatment on MAPKsignaling pathways of human immune cell lines. Immunobiology218, 1248-1255. https://doi.org/10.1016/j.imbio.2013.04.015
  19. Bussiahn, R., Lembke, N., Gesche, R., von Woedtke, T. and Weltmann, K. D. (2013) Plasma sources for biomedical applications. Hyg. Med. 38, 212-216.
  20. Cha, H. Y., Kim, H. O., Jin, J. S. and Lee J. C. (2010) Emergence of vancomycin-intermediate Staphylococcus aureus from predominant methicillin-resistant S. aureus clones in a Korean hospital. J. Microbiol. 48, 533-535. https://doi.org/10.1007/s12275-010-0062-5
  21. Cha, H. Y., Moon, D. C., Choi, C. H., Oh, J. Y., Jeong, Y. S., Lee, Y. C., Seol, S. Y., Cho, D. T., Chang, H. H., Kim, S. W. and Lee J. C. (2005) Prevalence of the ST239 clone of methicillin-resistant Staphylococcus aureus and differences in antimicrobial susceptibilities of ST239 and ST5 clones identified in a Korean hospital. J. Clin. Microbiol. 43, 3610-3614. https://doi.org/10.1128/JCM.43.8.3610-3614.2005
  22. Daeschlein, G. (2013) Antimicrobial and antiseptic strategies in wound management. Int. Wound J. 10(Suppl. 1), 9-14. https://doi.org/10.1111/iwj.12175
  23. Daeschlein, G., Napp, M., von Podewils, S., Lutze, S., Emmert, S., Lange, A., Klare, I., Haase, H., Gumbel, D., von Woedtke, T. and Junger, M. (2014) In vitro susceptibility of multidrug resistant skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process. Polym. 11, 175-183. https://doi.org/10.1002/ppap.201300070
  24. Daeschlein, G., Scholz, S., Ahmed, R., Majumdar, A., von Woedtke, T., Haase, H., Niggemeier, M., Kindel, E., Brandenburg, R., Weltmann, K. D. and Junger, M. (2012b) Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J. Dtsch. Dermatol. Ges. 10, 509-515.
  25. Daeschlein, G., Scholz, S., Ahmed, R., von Woedtke, T., Haase, H., Niggemeier, M., Kindel, E., Brandenburg, R., Weltmann, K. D. and Junger, M. (2012a) Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J. Hosp. Infect. 81, 177-183. https://doi.org/10.1016/j.jhin.2012.02.012
  26. DIN SPEC 91315 (2014) "General requirements for plasma sources in medicine", DIN Deutsches Institut fur Normung e.V., Beuth Verlag Berlin, June 2014. http://www.spec.din.de/cmd?level=tpl-art-detailansicht&committeeid=0&artid=203493369&languageid=en&bcrumblevel=2
  27. Dobrynin, D., Wu, A., Kalghatgi, S., Park, S., Shainsky, N., Wasko, K., Dumani, E., Ownbey, R., Joshi, S., Sensing, R. and Brooks, A. D. (2011) Live pig skin tissue and wound toxicity of cold plasma treatment. Plasma Med. 1, 93-108. https://doi.org/10.1615/PlasmaMed.v1.i1.80
  28. Droge W. (2002) Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47-95. https://doi.org/10.1152/physrev.00018.2001
  29. Duval, A., Marinov, I., Bousquet, G., Gapihan, G., Starikovskaia, S. M., Rousseau, A. and Janin, A. (2013) Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma. PLoS One 8, e83001. https://doi.org/10.1371/journal.pone.0083001
  30. Ehlbeck, J., Schnabel, U., Polak, M., Winter, J., von Woedtke, T., Brandenburg, R., von dem Hagen, T. and Weltmann, K. D. (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J. Phys. D: Appl. Phys. 44, 013002. https://doi.org/10.1088/0022-3727/44/1/013002
  31. Elvis, A. M. and Ekta, J. S. (2011) Ozone therapy: A clinical review. J. Nat. Sci. Biol. Med. 2, 66-70. https://doi.org/10.4103/0976-9668.82319
  32. Emmert, S., Brehmer, F., Hanble, H., Helmke, A., Mertens, N., Ahmed, R., Simon, D., Wandke, D., Maus-Friedrichs, W., Daeschlein, G., Schon, M.P. and Viol, W. (2013) Atmospheric pressure plasma in dermatology: Ulcus treatment and much more. Clin. Plasma Med. 1, 24-29. https://doi.org/10.1016/j.cpme.2012.11.002
  33. Ermolaeva, S. A., Varfolomeev, A. F., Chernukha, M. Y., Yurov, D. S., Vasiliev, M. M., Kaminskaya, A. A., Moisenovich, M. M., Romanova, J. M., Murashev, A. N., Selezneva, I. I., Shimizu, T., Sysolyatina, E. V., Shaginyan, I. A., Petrov, O. F., Mayevsky, E. I., Fortov, V. E., Morfill, G. E., Naroditsky, B. S. and Gintsburg, A. L. (2011) Bactericidal effects of non-thermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol. 60, 75-83. https://doi.org/10.1099/jmm.0.020263-0
  34. Fluhr, J. W, Sassning, S., Lademann, O., Darvin, M. E., Schanzer, S., Kramer, A., Richter, H., Sterry, W. and Lademann, J. (2012) In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp. Dermatol. 21, 130-134. https://doi.org/10.1111/j.1600-0625.2011.01411.x
  35. Fricke, K., Koban, I., Tresp, H., Jablonowski, L., Schroder, K., Kramer, A., Weltmann, K. D., von Woedtke, T., and Kocher, T. (2012) Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms. PLoS One 7, e42539. https://doi.org/10.1371/journal.pone.0042539
  36. Garcia, J. L., Asadinezhad, A., Pachernik, J., Lehocky, M., Junkar, I., Humpolicek, P., Saha, P. and Valasek, P. (2010) Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment. Molecules 15, 2845-2856. https://doi.org/10.3390/molecules15042845
  37. Garcia-Alcantara, E., Lopez-Callejas, R., Morales-Ramirez, P. R., Pena-Eguiluz, R., Fajardo-Munoz, R., Mercado-Cabrera, A., Barocio, S. R., Valencia-Alvarado, R., Rodriguez-Mendez, B. G., Munoz-Castro, A. E., de la Piedad-Beneitez, A. and Rojas-Olmedo, I. A. (2013) Accelerated mice skin acute wound healing in vivo by combined treatment of argon and helium plasma needle. Arch. Med. Res. 44, 169-177. https://doi.org/10.1016/j.arcmed.2013.02.001
  38. Goetz, M. E. and Luch, A. (2008) Reactive species: a cell damaging rout assisting to chemical carcinogens. Cancer Lett. 266, 73-83. https://doi.org/10.1016/j.canlet.2008.02.035
  39. Gunther, C.I. and Machens, H.G. (2014) Innovations in wound medicine.Wound Med. 4, 9-12. https://doi.org/10.1016/j.wndm.2013.11.001
  40. Hadi, M. Z., Coleman, M. A., Fidelis, K., Mohrenweiser, H. W. and Wilson, D. M. 3rd. (2000) Functional characterization of Ape1 variants identified in the human population. Nucleic Acids Res. 28, 3871-3879. https://doi.org/10.1093/nar/28.20.3871
  41. Haertel, B., Eiden, K., Deuter, A., Wende, K., von Woedtke, T., Lindequist, U. (2014) Differential effect of non-thermal atmospheric-pressure plasma on angiogenesis. Lett. Appl. NanoBioSci. 3, 159-166.
  42. Haertel, B., Hahnel, M., Blackert, S., Wende, K., von Woedtke, T. and Lindequist, U. (2012a) Surface molecules on HaCaT keratinocytes after interaction with non-thermal atmospheric pressure plasma. Cell Biol. Int. 36, 1217-1222. https://doi.org/10.1042/CBI20120139
  43. Haertel, B., Strabenburg, S., Harms, M., Wende, K., Lindequist, U. and von Woedtke, T. (2013a) Biological effects of non-thermal atmospheric-pressure plasma on human HaCaT-keratinocytes. Hyg. Med. 38, 198-205.
  44. Haertel, B., Strabenburg, S., Oehmigen, K., Wende, K., von Woedtke, T. and Lindequist, U. (2013b) Differential influence of components resulting from atmospheric-pressure plasma on integrin expression of human HaCaT keratinocytes. BioMed. Res. Int. 2013, 761451.
  45. Haertel, B., Volkmann, F., von Woedtke, T. and Lindequist, U. (2012b) Differential sensitivity of lymphocyte subpopulations to non-thermal atmospheric-pressure plasma. Immunobiology 217, 628-633. https://doi.org/10.1016/j.imbio.2011.10.017
  46. Haertel, B., Wende, K., von Woedtke, T., Weltmann, K. D. and Lindequist, U. (2011) Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes. Exp. Dermatol. 20, 282-284. https://doi.org/10.1111/j.1600-0625.2010.01159.x
  47. Hahnel, M., von Woedtke, T. and Weltmann, K. D. (2010). Influence of the air humidity on the reduction of bacillus spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge. Plasma Process. Polym. 7, 244-249. https://doi.org/10.1002/ppap.200900076
  48. Heinlin, J., Isbary, G., Stolz, W., Zeman, F., Landthaler, M., Morfill, G., Shimizu, T., Zimmermann, J. L. and Karrer, S. (2013a) A randomized two-sided placebo-controlled study on the efficacy and safety of atmospheric non-thermal argon plasma for pruritus. J. Eur. Acad. Dermatol. Venereol. 27, 324-331. https://doi.org/10.1111/j.1468-3083.2011.04395.x
  49. Heinlin, J., Zimmermann, J. L., Zeman, F., Bunk, W., Isbary, G., Landmthaler, M., Maisch, T., Monetti, R., Morfill, G., Shimizu, T., Steinbauer, J., Stolz, W., and Karrer, S. (2013b) Randomized placebocontrolled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 21, 800-807. https://doi.org/10.1111/wrr.12078
  50. Hoentsch, M., von Woedtke, T., Weltmann, K. D. and Nebe, J. B. (2012) Time-dependent effects of low-temperature atmosphericpressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro. J. Phys. D: Appl. Phys. 45, 025206. https://doi.org/10.1088/0022-3727/45/2/025206
  51. Hoentsch, M., Bussiahn, R., Rebl, H., Bergemann, C., Eggert, M., Frank, M., von Woedtke, T. and Nebe, J. B. (2014) Persistent Effectivity of gas plasmaa-treated, long time-stored liquid on epithelial cell adhesion capacity and membrane morphology. PLoS One 9, e104559. https://doi.org/10.1371/journal.pone.0104559
  52. Hong, Y. F., Kang, J. G., Lee, H. Y., Uhm, H. S., Moon, E. and Park, Y. H. (2009) Sterilization effect of atmospheric plasma on Escherichia coli and Bacillus subtilis endospores. Lett. Appl. Microbiol. 48, 33-37. https://doi.org/10.1111/j.1472-765X.2008.02480.x
  53. Isbary, G., Heinlin, J., Shimizu, T., Zimmermann, J. L., Morfill, G., Schmidt, H. U., Monetti, R., Steffes, B., Bunk, W., Li, Y., Klaempfl, T., Karrer, S., Landthaler, M. and Stolz, W. (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br. J. Dermatol. 167, 404-410. https://doi.org/10.1111/j.1365-2133.2012.10923.x
  54. Isbary, G., Koritzer, J., Mitra, A., Li, Y. F., Shimizu, T., Schroeder, J., Schlegel, J., Morfill, G. E., Stolz, W. and Zimmermann, J. L. (2013c) Ex vivo human skin experiments for the evaluation of safety of new cold atmospheric plasma devices. Clin. Plasma Med. 1, 36-44. https://doi.org/10.1016/j.cpme.2012.10.001
  55. Isbary, G., Morfill, G., Schmidt, H. U., Georgi, M., Ramrath, K., Heinlin, J., Karrer, S., Landthaler, M., Shimizu, T., Steffes, B., Bunk, W., Monetti, R., Zimmermann, J. L., Pompl, R. and Stolz, W. (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 163, 78-82.
  56. Isbary, G., Morfill, G., Zimmermann, J., Shimizu, T. and Stolz, W. (2011) Cold atmospheric plasma: a successful treatment of lesions in Hailey-Hailey disease. Arch. Dermatol. 147, 388-390. https://doi.org/10.1001/archdermatol.2011.57
  57. Isbary, G., Stolz, W., Shimizu, T., Monetti, R., Bunk, W., Schmidt, H. U., Morfill, G. E., Klampfl, T. G., Steffes, B., Thomas, H. M., Heinlin, J., Karrer, S., Landthaler, M. and Zimmermann, J. L. (2013a) Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo. Clin. Plasma Med. 1, 25-30. https://doi.org/10.1016/j.cpme.2013.06.001
  58. Isbary, G., Zimmermann, J. L, Shimizu, T., Li, Y. F., Morfill G., Thomas, H. M., Steffes, B., Heinlin, J., Karrer, S. and Stolz W. (2013b) Nonthermal plasma-More than five years of clinical experience. Clin. Plasma Med. 1, 19-23. https://doi.org/10.1016/j.cpme.2012.11.001
  59. Joshi, S. G., Paff, M., Friedman, G., Fridman, G., Fridman, A., and Brooks A. D. (2010) Control of methicillin-resistant Staphylococcus aureus in planktonic form and biofilms: A biocidal efficacy study of non-thermal dielectric-barrier discharge plasma. Am. J. Infect. Control 38, 293-301. https://doi.org/10.1016/j.ajic.2009.11.002
  60. Julak, J. and Scholtz, V. (2013) Decontamination of human skin by low-temperature plasma produced by cometary discharge. Clin. Plasma Med. 1, 31-34. https://doi.org/10.1016/j.cpme.2013.09.002
  61. Kalghatgi, S. and Azizkhan-Clifford, J. (2011a) DNA damage in mammalian cells by atmospheric pressure microsecond-pulsed dielectric barrier discharge plasma is not mediated via lipid peroxidation. Plasma Med. 1, 167-177. https://doi.org/10.1615/PlasmaMed.2011003798
  62. Kalghatgi, S., Fridman, A., Azizkhan-Clifford, J. and Friedman, G. (2012) DNA damage in mammalian cells by non-thermal atmospheric pressure microsecond pulsed dielectric barrier discharge plasma is not mediated by ozone. Plasma Process. Polym. 9, 726-732. https://doi.org/10.1002/ppap.201100156
  63. Kalghatgi, S., Friedman, G., Fridman, A. and Clyne, A. M. (2010) Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38, 748-757. https://doi.org/10.1007/s10439-009-9868-x
  64. Kalghatgi, S., Kelly, C., Cerchar, E., Torabi B., Alekseev, O., Fridman, A., Friedman, G. and Azizkhan-Clifford, J. (2011b) Effects of nonthermal plasma on mammalian cells. PLoS One 6, e16270. https://doi.org/10.1371/journal.pone.0016270
  65. Kieft, I. E., Broers, J. L., Caubet-Hilloutou, V., Slaaf, D. W., Ramaekers, F. C. and Stoffels, E. (2004) Electric discharge plasmas influence attachment of cultured CHO K1 cells. Bioelectromagnetics 25, 362-368. https://doi.org/10.1002/bem.20005
  66. Kim, H. B., Park, W. B., Lee, K. D., Choi, Y. J., Park, S. W., Oh, M., Kim, E. C. and Choe, K. W. (2003a) Nationwide surveillance for Staphylococcus aureus with reduced susceptibility to vancomycin in Korea. J. Clin. Microbiol. 41, 2279-2281. https://doi.org/10.1128/JCM.41.6.2279-2281.2003
  67. Kim, J. G., Yousef, A. E. and Khadre, M. A. (2003b) Ozone and its current and future application in the food industry. Adv. Food Nutr. Res. 45, 167-218. https://doi.org/10.1016/S1043-4526(03)45005-5
  68. Kim, P. Y., Kim, Y. S., Koo, I. G., Jung, J. C., Kim, G. J., Choi, M. Y., Yu, Z. Q. and Collins, G. J. (2011a) Bacterial inactivation of wound infection in a human skin model by liquid-phase discharge plasma. PLoS One 6, e24104. https://doi.org/10.1371/journal.pone.0024104
  69. Kim, W., Woo, K. C., Kim, G. C. and Kim, K. T. (2011b) Non-thermalplasma-mediated animal cell death. J. Phys. D: Appl. Phys. 44, 013001. https://doi.org/10.1088/0022-3727/44/1/013001
  70. Klebes, M., Lademann, J., Philipp, S., Ulrich, C., Patzelt, A., Ulmer, M., Kluschke, F., Kramer, A., Weltmann, K. D., Sterry, W. and Lange-Asschenfeldt, B. (2014) Effects of tissue-tolerable plasma on psoriasis vulgaris treatment compared to conventional local treatment: A pilot study. Clin. Plasma Med., in press, DOI: 10.1016/j.cpme.2013.11.002.
  71. Koritzer, J., Boxhammer, V., Schafer, A., Shimizu, T., Klampfl, T. G., Li, Y. F., Welz, C., Schwenk-Zieger, S., Morfill, G. E., Zimmermann, J. L. and Schlegel, J. (2013) Restoration of sensitivity in chemoresistant glioma cells by cold atmospheric plasma. PLoS One 8, e64498. https://doi.org/10.1371/journal.pone.0064498
  72. Kramer, A., Lademann, J., Bender, C., Sckell, A., Hartmann, B., Munch, S., Hinz, P., Ekkernkamp, A., Matthes, R., Koban, I., Partecke, I., Heidecke, C. D., Masur, K., Reuter, S., Weltmann, K. D., Koch, S. and Assadian, O. (2013) Suitability of tissue tolerable plasmas (TTP) for the management of chronic wounds. Clin. Plasma Med. 1, 11-18. https://doi.org/10.1016/j.cpme.2013.03.002
  73. Kuo, L. J. and Yang, L. X. (2008) ${\gamma}$-H2AX - A novel biomarker for DNA double-strand breaks. In Vivo 22, 305-310.
  74. Kurth, A. (2013) Einfluss von physikalischem Plasma auf in vitro kultivierte HaCaT-Zellen: Einfluss auf DNA und Reparaturmechanismen. Diploma Thesis, Ernst-Moritz-Arndt-University Greifswald.
  75. Lademann, J., Ulrich, C., Patzelt, A., Richter, H., Kluschke, F., Klebes, M., Lademann, O., Kramer, A., Weltmann, K. D. and Lange-Asschenfeldt, B. (2013) Risk assessment of the application of tissuetolerable plasma on human skin. Clin. Plasma Med. 1, 5-10. https://doi.org/10.1016/j.cpme.2013.01.001
  76. Langmuir, I. (1928) Oscillations in ionized gases. Proc. Nat. Acad. Sci. U.S.A. 14, 627-637. https://doi.org/10.1073/pnas.14.8.627
  77. Lauffenburger, D. A. and Horwitz, A. F. (1996) Cell migration: a physically integrated molecular process. Cell 84, 359-369. https://doi.org/10.1016/S0092-8674(00)81280-5
  78. Leduc, M., Guay, D., Coulombe S. and Leask R. L. (2010) Effects of non-thermal plasmas on DNA and mammalian cells. Plasma Process. Polym. 7, 899-909. https://doi.org/10.1002/ppap.201000032
  79. Li, Y. F., Taylor, D., Zimmermann, J. L., Bunk, W., Monetti, R., Isbary, G., Boxhammer, V., Schmidt, H. U., Shimizu, T., Thomas, H. M. and Morfill, G. E. (2013) In vivo skin treatment using two portable plasma devices: Comparison of a direct and an indirect cold atmospheric plasma treatment. Clin. Plasma Med. 1, 35-39. https://doi.org/10.1016/j.cpme.2013.09.001
  80. Lloyd, G, Friedman, G., Jafri, S., Schultz, G., Fridman, A., Harding, K. (2010) Gas plasma: medical uses and developments in wound care. Plasma Process. Polym. 7, 194-211. https://doi.org/10.1002/ppap.200900097
  81. Lopes, B. B., Kraft, M. B. P. L., Rehder, J., Batista, F. R. X. and Puzzi, M. B. (2013) The interactions between non-thermal atmospheric pressure plasma and ex-vivo dermal fibroblasts. Procedia Engin. 59, 92-100. https://doi.org/10.1016/j.proeng.2013.05.098
  82. Ma Y, Ha, C. S., Hwang, S. W., Lee, H. J., Kim, G. C., Lee, K. W. and Song, S. (2014) Non-thermal atmospheric pressure plasma preferentially induces apoptosis in p53-mutated cancer cells by activating ros stress-response pathways. PLoS One 9, e91947. https://doi.org/10.1371/journal.pone.0091947
  83. Maisch, T., Shimizu, T., Li, Y. F., Heinlin, J., Karrer, S., Morfill, G. and Zimmermann, J. L. (2012) Decolonisation of MRSA, S. aureus and E. coli by cold-atmospheric plasma using a porcine skin model in vitro. PLoS One 7, e34610. https://doi.org/10.1371/journal.pone.0034610
  84. Mann, M., Tiede, R., Ahmed, R., Wandtke, D., Wurster, S., Weltmann, K. D., Deaschlein, G., Emmert, S. and von Woedtke, T. (2014) Standards in plasma medicine: development, contents and importance of the first German DIN specification. ICPM5, May 18-23, 2014, Nara, Japan.
  85. Matthes, R., Bekeschus, S., Bender, C., Koban, I., Hubner, N. O. and Kramer A. (2012) Pilot-study on the influence of carrier gas and plasma application (open resp. delimited) modifications on physical plasma and its antimicrobial effect against Pseudomonas aeruginosa and Staphylococcus aureus. GMS Krankenhaushyg. Interdiszipl. 7, 1-7.
  86. Matthes, R., Bender, C., Schluter, R., Koban, I., Bussiahn, R., Reuter, S., Lademann, J., Weltmann, K. D. and Kramer, A. (2013) Antimicrobial efficacy of two surface barrier discharges with air plasma against in vitro biofilms. PLoS One 8, e70462. https://doi.org/10.1371/journal.pone.0070462
  87. Morales-Ramirez, P., Cruz-Vallejo, V., Pena-Eguiluz, R., Lopez-Callejas, R., Rodriguez-Mendez, B.G., Valencia-Alvarado, R., Mercado-Cabrera, A. and Munoz-Castro, A. E. (2013) Assessing cellular DNA damage from a helium plasma needle. Radiat. Res. 179, 669-673. https://doi.org/10.1667/RR3223.1
  88. Nasruddin, Nakajima, Y., Mukai, K., Rahayu, H. S. E., Nur, M., Ishijima, T., Enomoto, H., Uesugi, Y., Sugama, J. and Nakatani, T. (2014) Cold plasma on full-thickness cutaneous wound accelerates healing through promoting inflammation, re-epithelialization and wound contraction. Clin. Plasma Med., in press, DOI: 10.1016/j.cpme.2014.01.001.
  89. Nastuta, A. V., Topala, I., Grigoras, C., Pohoata, V. and Popa, G. (2011) Stimulation of wound healing by helium atmospheric pressure plasma treatment. J. Phys. D: Appl. Phys. 44, 105204. https://doi.org/10.1088/0022-3727/44/10/105204
  90. Ngo, M. H. T., Liao, J. D., Shao, P. L., Weng, C. C. and Chang, C. Y. (2014) Increased fibroblast cell proliferation and migration using atmospheric $N_2$/Ar micro-plasma for the stimulated release of fibroblast growth factor-7. Plasma Process. Polym. 11, 80-88. https://doi.org/10.1002/ppap.201300098
  91. Oehmigen K. (2014) Plasma-Flussigkeit-Wechselwirkungen. Doctoral Thesis, Ernst-Moritz-Arndt-University of Greifswald.
  92. Park, S. H., Park, C., Yoo, J. H., Choi, S. M., Choi, J. H., Shin, H. H., Lee, D. G., Lee, S., Kim, J., Choi, S. E., Kwon, Y. M. and Shin, W. S. (2009) Emergence of community-associated methicillin-resistant Staphylococcus aureus strains as a cause of healthcareassociated bloodstream infections in Korea. Infect. Control Hosp. Epidemiol. 30,146-155. https://doi.org/10.1086/593953
  93. Pipa, A. V., Reuter, S., Foest, R. and Weltmann, K. D. (2012) Controlling the NO production of an atmospheric pressure plasma jet. J. Phys. D: Appl. Phys. 45, 085201. https://doi.org/10.1088/0022-3727/45/8/085201
  94. Polak, M., Winter, J., Schnabel, U., Ehlbeck J. and Weltmann, K. D. (2012) Innovative plasma generation in flexible biopsy channels for inner-tube decontamination and medical applications. Plasma Process. Polym. 9, 67-76. https://doi.org/10.1002/ppap.201000163
  95. Reuter, S., Winter, J., Schmidt-Bleker, A., Schroeder, D., Lange, H., Knake, N., Schulz-von der Gathen, V. and Weltmann, K. D. (2012a) Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion. Plasma Sources Sci. Technol. 21, 024005. https://doi.org/10.1088/0963-0252/21/2/024005
  96. Reuter, S., Winter, J., Iseni, S., Peters, S., Schmidt-Bleker, A., Dunnbier, M., Schafer, J., Foest, R. and Weltmann, K. D. (2012b) Detection of ozone in a MHz argon plasma bullet jet. Plasma Sources Sci. Technol. 21, 034015. https://doi.org/10.1088/0963-0252/21/3/034015
  97. Robert, E., Vandamme, M., Brulle, L., Lerondel, S., LePape, A., Sarron, V., Ries, D., Darny, T., Dozias, S., Collet, G., Kiedaand, C. and Pouvesle, J. M. (2013) Perspectives of endoscopic plasma applications. Clin. Plasma Med. 1, 8-16. https://doi.org/10.1016/j.cpme.2013.10.002
  98. Salvioli, S., Ardizzoni, A., Franceschi, C and Cossarizza A. (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ${\Delta}{\psi}$ changes in intact cells: Implications for studies on mitochondrial functionality during apoptosis. FEBS Lett. 411, 77-82. https://doi.org/10.1016/S0014-5793(97)00669-8
  99. Schaper, L., Reuter, S., Waskoenig, J., Niemi, K., Schulz-von der Gathen, V. and Gans, T. (2009) The dynamics of radio-frequency driven atmospheric pressure plasma jets. J. Phys: Conference Series 162, 012013. https://doi.org/10.1088/1742-6596/162/1/012013
  100. Schmidt, A., von Woedtke, T., Weltmann, K. D. and Masur, K. (2013a) Identification of the molecular basis of non-thermal plasma-induced changes in human keratinocytes. Plasma Med. 3, 15-25. https://doi.org/10.1615/PlasmaMed.2014008535
  101. Schmidt, A., Wende, K., Bekeschus, S., Bundscherer, L., Barton, A., Ottmuller, K., Weltmann, K. D. and Masur, K. (2013b) Non-thermal plasma treatment is associated with changes in transcriptome of human epithelial skin cells. Free Radic. Res. 47, 577-592. https://doi.org/10.3109/10715762.2013.804623
  102. Schmidt-Bleker, A., Winter, J., Iseni, S., Dunnbier, M., Weltmann, K.D. and Reuter, S. (2014) Reactive species output of a plasma jet with a shielding gas device-combination of FTIR absorption spectroscopy and gas phase modelling. J. Phys. D: Appl. Phys. 47, 145201. https://doi.org/10.1088/0022-3727/47/14/145201
  103. Shashurin, A., Stepp, M. A., Hawley, T. S., Pal-Ghosh, S., Brieda, L., Bronnikov, S., Jurjus, R. A. and Keidar, M. (2010) Influence of cold plasma atmospheric jet on surface integrin expression of living cells. Plasma Process. Polym. 7, 294-300. https://doi.org/10.1002/ppap.200900086
  104. Shi, X. M., Zhang, G. J., Yuan, Y. K., Ma, Y., Xu, G. M. and Yang, Y. (2008) Effects of low-temperature atmospheric air plasmas on the activity and function of human lymphocytes. Plasma Process. Polym. 5, 482-488. https://doi.org/10.1002/ppap.200700174
  105. Singh, N. P., McCoy, M. T., Tice, R. R. and Schneider, E. L. (1988) A simple technique for quantitation of low-levels of DNA damage in individual cells. Exp. Cell Res. 175, 184-191. https://doi.org/10.1016/0014-4827(88)90265-0
  106. Steinbeck, J., Chernets, N., Zhang, J., Kurpad, D. S., Fridman, G., Fridman, A. and Freeman, T. A. (2013) Skeletal cell differentiation is enhanced by atmospheric dielectric barrier discharge plasma treatment. PLoS One 8, e82143. https://doi.org/10.1371/journal.pone.0082143
  107. Stoffels, E., Kieft, I. E. and Sladek, R. E. J. (2003) Superficial treatment of mammalian cells using plasma needle. J. Phys. D: Appl. Phys. 36, 2908-2913. https://doi.org/10.1088/0022-3727/36/23/007
  108. Strabenburg S. (2014) Untersuchungen zum Einfluss von physikalischem biological auf in vitro kultivierte Zellen. Doctoral Thesis, Ernst-Moritz-Arndt-University of Greifswald
  109. Strabenburg, S., Greim, U., Bussiahn, R., Haertel, B., Wende, K., von Woedtke, T. and Lindequist, U. (2013) Comparison of biological effects on human keratinocytes using different plasma treatment regimes. Plasma Med. 3, 57-69. https://doi.org/10.1615/PlasmaMed.2014008219
  110. Strausberg, J., Lehmann, N., Kroger, K., Maier, I., Schneider, H and Niebel, W. (2007) Changes in secondary care may explain increasing pressure ulcer rates in an University Clinic in Germany. Wound Manag. 5, 194-198.
  111. Sung, S. J., Huh, J. B., Yun, M. J., Chang, B. M., Jeong, C. M. and Jeon, Y. C. (2013). Sterilization effect of atmospheric pressure nonthermal air plasma on dental instruments. J. Adv. Prosthodont. 5, 2-8. https://doi.org/10.4047/jap.2013.5.1.2
  112. Taghizadeh, K., McFaline, J. L., Pang, B., Sullivan, M., Dong, M., Plummer, E. and Dedon, P. C. (2008) Quantification of DNA damage products resulting from deamination, oxidation and reaction with products of lipid peroxidation by liquid chromatography isotope dilution tandem mass spectrometry. Nat. Protoc. 3, 1287-1298. https://doi.org/10.1038/nprot.2008.119
  113. Vandamme, M., Robert, E., Lerondel, S., Sarron, V., Ries, D., Dozias, S., Sobilo, J., Gosset, D., Kieda, C., Legrain, B., Pouvesle, J.M. and Le Pape, A. (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int. J. Cancer 130, 2185-2194. https://doi.org/10.1002/ijc.26252
  114. Volotskova, O., Hawley, T. S., Stepp, M. A. and Keidar, M. (2012a) Targeting the cancer cell cycle by cold atmospheric plasma. Sci. Rep. 2, 636. https://doi.org/10.1038/srep00636
  115. Volotskova, O., Stepp, M. A. and Keidar, M. (2012b) Integrin activation by a cold atmospheric plasma jet. N. J. Phys. 14, 053019. https://doi.org/10.1088/1367-2630/14/5/053019
  116. von Woedtke, T., Metelmann, H.R. and Weltmann, K.D. (2014) Clinical plasma medicine: state and perspectives of in vivo application of cold atmospheric plasma. Contrib. Plasma Phys. 54, 104-117. https://doi.org/10.1002/ctpp.201310068
  117. von Woedtke, T., Reuter, S., Masur, K. and Weltmann, K. D. (2013) Plasmas for medicine. Phys. Rep. 530, 291-320. https://doi.org/10.1016/j.physrep.2013.05.005
  118. Weltmann, K. D., Brandenburg, R., von Woedtke, T., Ehlbeck, J., Foest, R., Stieber, M. and Kindel, E. (2008) Antimicrobial treatment of heat sensitive products by miniaturized atmospheric pressure plasma jets (APPJs). J. Phys. D: Appl. Phys. 41, 194008. https://doi.org/10.1088/0022-3727/41/19/194008
  119. Wende, K., Strabenburg, S., Haertel, B., Harms, M., Holtz, S., Barton, A., Masur, K., von Woedtke, T. and Lindequist, U. (2014) Atmospheric pressure plasma jet treatment evokes transient oxidative stress in HaCaT keratinocytes and influences cell physiology. Cell Biol. Int. 38, 412-425. https://doi.org/10.1002/cbin.10200
  120. Werdin, F., Tennenhaus, M., Schaller, H. E. and Rennekampff, H. O. (2009) Evidence-based management strategies for treatment of chronic wounds. ePlasty 9, e19.
  121. Widgerow, A. D. (2013) Chronic wounds: is cellular 'reception' at fault? Examining integrins and intracellular signaling. Int. Wound J. 10, 185-192. https://doi.org/10.1111/j.1742-481X.2012.00967.x
  122. Winter, J., Tresp, H., Hammer, M. U., Iseni, S., Kupsch, S., Schmidt-Bleker, A., Wende, K., Dunnbier, M., Masur, K., Weltmann, K. D. and Reuter, S. (2014) Tracking plasma generated $H_2O_2$ from gas into liquid phase and revealing its dominant impact on human skin cells. J. Phys. D: Appl. Phys. 47, 285401. https://doi.org/10.1088/0022-3727/47/28/285401
  123. Wu, Z., Chen, M., Li, P., Zhua, Q. and Wang, J. (2011) Dielectric barrier discharge non-thermal micro-plasma for the excitation and emission spectrometric detection of ammonia. Analyst 136, 2552-2557. https://doi.org/10.1039/c0an00938e
  124. Yu, Y., Tan, M., Chen, H., Wu, Z., Xu, L., Li, J., Cao, J., Yang, Y., Xiao, X., Lian, X., Lu, X. and Tu, Y. (2011) Non-thermal plasma suppresses bacterial colonization on skin wound and promotes wound healing in mice. J. Huazhong Univ. Sci. Technol. Med. Sci. 31, 390-394. https://doi.org/10.1007/s11596-011-0387-2
  125. Zhu, W. H., Iurlaro, M., MacIntyre, A., Fogel, E. and Nicosia, R. F. (2003) The mouse aorta model: influence of genetic background and aging on bFGF- and VEGF-induced angiogenic sprouting. Angiogenesis 6, 193-199. https://doi.org/10.1023/B:AGEN.0000021397.18713.9c
  126. Zimmermann, J. L., Dumler, K., Shimizu, T., Morfill, G. E., Wolf, A., Boxhammer, V., Schlegel, J., Gansbacher, B. and Anton, M. (2011) Effects of cold atmospheric plasmas on adenoviruses in solution. J. Phys. D Appl. Phys. 44, 505201. https://doi.org/10.1088/0022-3727/44/50/505201

Cited by

  1. The feasibility of cold atmospheric plasma in the treatment of complicated wounds in cranio-maxillo-facial surgery vol.45, pp.10, 2017, https://doi.org/10.1016/j.jcms.2017.07.008
  2. Evaluation the effectiveness of combinative treatment of cold plasma jet, Indonesian honey, and micro-well dressing to accelerate wound healing vol.5-6, 2017, https://doi.org/10.1016/j.cpme.2017.03.001
  3. Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma vol.6, pp.82, 2016, https://doi.org/10.1039/C6RA12791F
  4. Treatment of Wound Healing Disorders of Radial Forearm Free Flap Donor Sites Using Cold Atmospheric Plasma: A Proof of Concept vol.75, pp.2, 2017, https://doi.org/10.1016/j.joms.2016.08.011
  5. Introduction to serial reviews: Biomedical application of non-thermal atmospheric pressure plasma and its usefulness vol.60, pp.1, 2017, https://doi.org/10.3164/jcbn.16-78
  6. Plasma bullets behavior in a tube covered by a conductor vol.22, pp.6, 2015, https://doi.org/10.1063/1.4922430
  7. Effect of a nonthermal-atmospheric pressure plasma jet on wound healing: An animal study vol.79, pp.6, 2016, https://doi.org/10.1016/j.jcma.2015.06.024
  8. Mitochondria-Mediated Anticancer Effects of Non-Thermal Atmospheric Plasma vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0156818
  9. Bactericidal efficacy of cold plasma in processed bone. A new approach for adjuvant therapy of medication-related osteonecrosis of the jaw? vol.4, pp.1, 2016, https://doi.org/10.1016/j.cpme.2015.12.001
  10. Hemorheological alterations of red blood cells induced by non-thermal dielectric barrier discharge plasma vol.109, pp.19, 2016, https://doi.org/10.1063/1.4967451
  11. Liver Hemostasis by Using Cold Plasma vol.24, pp.3, 2017, https://doi.org/10.1177/1553350617691710
  12. Translational plasma stomatology: applications of cold atmospheric plasmas in dentistry and their extension vol.2, pp.3, 2017, https://doi.org/10.1049/hve.2017.0066
  13. Plasma medicine—current state of research and medical application vol.59, pp.1, 2017, https://doi.org/10.1088/0741-3335/59/1/014031
  14. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing vol.49, pp.7, 2016, https://doi.org/10.1088/0022-3727/49/7/075402
  15. Cytoprotective effects of mild plasma-activated medium against oxidative stress in human skin fibroblasts vol.7, 2017, https://doi.org/10.1038/srep42208
  16. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer vol.33, pp.6, 2016, https://doi.org/10.1007/s12325-016-0338-1
  17. Non-thermal atmospheric pressure dielectric barrier discharge plasma source construction and investigation on the effect of grid on wound healing application vol.4, pp.2, 2016, https://doi.org/10.1016/j.cpme.2016.11.002
  18. Non-Thermal Plasma in Contact with Water: The Origin of Species vol.22, pp.10, 2016, https://doi.org/10.1002/chem.201503771
  19. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence vol.6, pp.1, 2016, https://doi.org/10.1038/srep26320
  20. Non-thermal gas plasma-induced endoplasmic reticulum stress mediates apoptosis in human colon cancer cells vol.36, pp.4, 2016, https://doi.org/10.3892/or.2016.5038
  21. Molecular association of CD98, CD29, and CD147 critically mediates monocytic U937 cell adhesion vol.20, pp.5, 2016, https://doi.org/10.4196/kjpp.2016.20.5.515
  22. Effects of assisted magnetic field to an atmospheric-pressure plasma jet on radical generation at the plasma-surface interface and bactericidal function vol.25, pp.6, 2016, https://doi.org/10.1088/0963-0252/25/6/065005
  23. Oxidation and Biodecontamination Effects of Impulsive Discharges in Atmospheric Air vol.44, pp.10, 2016, https://doi.org/10.1109/TPS.2016.2581317
  24. Plasma treatment effect on angiogenesis in wound healing process evaluated in vivo using angiographic optical coherence tomography vol.109, pp.23, 2016, https://doi.org/10.1063/1.4967375
  25. Dual effects of atmospheric pressure plasma jet on skin wound healing of mice vol.23, pp.6, 2015, https://doi.org/10.1111/wrr.12364
  26. Frequency of cell treatment with cold microwave argon plasma is important for the final outcome vol.49, pp.29, 2016, https://doi.org/10.1088/0022-3727/49/29/294002
  27. A comparative study of biomolecule and polymer surface modifications by a surface microdischarge vol.70, pp.2, 2016, https://doi.org/10.1140/epjd/e2015-60446-3
  28. Propagating plasma discontinuity in a tube immersed in distilled water vol.119, pp.16, 2016, https://doi.org/10.1063/1.4947451
  29. Low temperature plasma equipment applied on surgical hemostasis and wound healings vol.60, pp.1, 2017, https://doi.org/10.3164/jcbn.16-60
  30. Cold plasma inactivation of chronic wound bacteria vol.605, 2016, https://doi.org/10.1016/j.abb.2016.03.033
  31. Cold plasma: a novel approach to treat infected dentin—a combined ex vivo and in vitro study vol.20, pp.9, 2016, https://doi.org/10.1007/s00784-016-1723-5
  32. Assessment of the Effects of Nitrogen Plasma and Plasma-Generated Nitric Oxide on Early Development ofCoriandum sativum vol.12, pp.10, 2015, https://doi.org/10.1002/ppap.201500021
  33. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation vol.6, pp.1, 2016, https://doi.org/10.1038/srep28829
  34. The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer vol.15, pp.4, 2016, https://doi.org/10.1177/1534734616665046
  35. Bactericidal efficacy of tissue tolerable plasma on microrough titanium dental implants: Anin-vitro-study vol.9, pp.6, 2016, https://doi.org/10.1002/jbio.201500189
  36. Non-thermal air plasma promotes the healing of acute skin wounds in rats vol.7, 2017, https://doi.org/10.1038/srep45183
  37. Analysis of cold atmospheric-pressure bio-medicine plasmas by using UV absorption spectroscopy vol.306, 2016, https://doi.org/10.1016/j.surfcoat.2016.05.025
  38. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats vol.6, pp.1, 2016, https://doi.org/10.1038/srep19144
  39. Inactivation of dermatophyte infection by nonthermal plasma on animal model 2016, https://doi.org/10.1093/mmy/myw094
  40. Cytotoxic and mutagenic potential of solutions exposed to cold atmospheric plasma vol.6, pp.1, 2016, https://doi.org/10.1038/srep21464
  41. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds vol.11, pp.6, 2016, https://doi.org/10.1371/journal.pone.0156699
  42. N2 non-thermal atmospheric pressure plasma promotes wound healing in vitro and in vivo: Potential modulation of adhesion molecules and matrix metalloproteinase-9 vol.26, pp.2, 2017, https://doi.org/10.1111/exd.13229
  43. Role of Ambient Gas Composition on Cold Physical Plasma-Elicited Cell Signaling in Keratinocytes vol.112, pp.11, 2017, https://doi.org/10.1016/j.bpj.2017.04.030
  44. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells vol.8, pp.5, 2017, https://doi.org/10.1364/BOE.8.002649
  45. Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability vol.49, pp.31, 2016, https://doi.org/10.1088/0022-3727/49/31/315201
  46. Changes of2H and18O abundances in water treated with non-thermal atmospheric pressure plasma jet 2017, https://doi.org/10.1002/ppap.201600239
  47. Head and neck cancer treatment and physical plasma vol.3, pp.1, 2015, https://doi.org/10.1016/j.cpme.2015.02.001
  48. Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts vol.18, pp.4, 2016, https://doi.org/10.1088/1009-0630/18/4/04
  49. Cold atmospheric plasma: a new tool for the treatment of superficial driveline infections vol.51, pp.1, 2017, https://doi.org/10.1093/ejcts/ezw212
  50. Hydrophobic Coatings on Cotton Obtained by in Situ Plasma Polymerization of a Fluorinated Monomer in Ethanol Solutions vol.9, pp.6, 2017, https://doi.org/10.1021/acsami.6b15812
  51. Proteomic Changes of Tissue-Tolerable Plasma Treated Airway Epithelial Cells and Their Relation to Wound Healing vol.2015, 2015, https://doi.org/10.1155/2015/506059
  52. Adjuvant antifungal therapy using tissue tolerable plasma on oral mucosa and removable dentures in oral candidiasis patients: a randomised double-blinded split-mouth pilot study vol.59, pp.7, 2016, https://doi.org/10.1111/myc.12495
  53. Cold Atmospheric Plasma Inhibits HIV-1 Replication in Macrophages by Targeting Both the Virus and the Cells vol.11, pp.10, 2016, https://doi.org/10.1371/journal.pone.0165322
  54. Terminal sterilization: Conventional methods versus emerging cold atmospheric pressure plasma technology for non-viable biological tissues vol.14, pp.7, 2017, https://doi.org/10.1002/ppap.201600134
  55. Comparison of fungicidal properties of non-thermal plasma produced by corona discharge and dielectric barrier discharge 2017, https://doi.org/10.1007/s12223-017-0535-6
  56. Wearable Plasma Pads for Biomedical Applications vol.7, pp.12, 2017, https://doi.org/10.3390/app7121308
  57. Medical applications of nonthermal atmospheric pressure plasma in dermatology vol.16, pp.1, 2017, https://doi.org/10.1111/ddg.13373
  58. In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-24049-z
  59. Medizinische Anwendungen von nicht-thermischem Atmosphärendruckplasma in der Dermatologie vol.16, pp.1, 2018, https://doi.org/10.1111/ddg.13373_g
  60. Medically important biofilms and non-thermal plasma vol.34, pp.12, 2018, https://doi.org/10.1007/s11274-018-2560-2
  61. The generation and transport of reactive nitrogen species from a low temperature atmospheric pressure air plasma source vol.20, pp.45, 2018, https://doi.org/10.1039/C8CP05762A
  62. Recent advancements in the application of non-thermal plasma technology for the seafood industry pp.1549-7852, 2018, https://doi.org/10.1080/10408398.2018.1510827
  63. Non-thermal plasma treated solution with potential as a novel therapeutic agent for nasal mucosa regeneration vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-32077-y
  64. Triboelectric microplasma powered by mechanical stimuli vol.9, pp.1, 2018, https://doi.org/10.1038/s41467-018-06198-x
  65. Effect of cold plasma on periodontal wound healing—an in vitro study pp.1436-3771, 2018, https://doi.org/10.1007/s00784-018-2643-3
  66. Modern wound treatment—from best practice to innovation pp.1433-0385, 2018, https://doi.org/10.1007/s00104-018-0731-1
  67. Biological and medical applications of plasma-activated media, water and solutions vol.0, pp.0, 2019, https://doi.org/10.1515/hsz-2018-0226
  68. Medical applications of cold atmospheric plasma: state of the science vol.27, pp.Sup9, 2018, https://doi.org/10.12968/jowc.2018.27.Sup9.S4
  69. Atomic scale understanding of the permeation of plasma species across native and oxidized membranes vol.51, pp.36, 2018, https://doi.org/10.1088/1361-6463/aad524
  70. Effects of the Pulse Polarity on Helium Plasma Jets: Discharge Characteristics, Key Reactive Species, and Inactivation of Myeloma Cell vol.38, pp.5, 2018, https://doi.org/10.1007/s11090-018-9920-4
  71. Non-antibiotic antimicrobial interventions and antimicrobial stewardship in wound care vol.27, pp.6, 2018, https://doi.org/10.12968/jowc.2018.27.6.355
  72. Atmospheric pressure plasma jet for biomedical applications characterised by passive thermal probe vol.72, pp.6, 2018, https://doi.org/10.1140/epjd/e2018-80768-8
  73. Various DC-driven point-to-plain discharges as non-thermal plasma sources and their bactericidal effects vol.27, pp.6, 2018, https://doi.org/10.1088/1361-6595/aabdd0
  74. Characterization of novel pin-hole based plasma source for generation of discharge in liquids supplied by DC non-pulsing voltage vol.27, pp.6, 2018, https://doi.org/10.1088/1361-6595/aac521
  75. Non-thermal plasma treatment improves chicken sperm motility via the regulation of demethylation levels vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-26049-5
  76. Contribution to the Chemistry of Plasma-Activated Water vol.44, pp.1, 2018, https://doi.org/10.1134/S1063780X18010075
  77. Cold plasma gas loaded microbubbles as a novel ultrasound contrast agent vol.11, pp.3, 2019, https://doi.org/10.1039/C8NR08451C
  78. Coagulation, deformability, and aggregation of RBCs and platelets following exposure to dielectric barrier discharge plasma with the use of different feeding gases vol.52, pp.15, 2019, https://doi.org/10.1088/1361-6463/ab0198
  79. A measurement method for determining the correlation between the amount of haemolysis and the electric current in low-temperature plasma treatment pp.16128850, 2019, https://doi.org/10.1002/ppap.201800142
  80. Cold atmospheric plasma ameliorates imiquimod-induced psoriasiform dermatitis in mice by mediating antiproliferative effects pp.1029-2470, 2019, https://doi.org/10.1080/10715762.2018.1564920
  81. Promotion Effects of Ultra-High Molecular Weight Poly-γ-Glutamic Acid on Wound Healing vol.25, pp.6, 2014, https://doi.org/10.4014/jmb.1412.12083
  82. Treatment of oral hyperpigmentation and gummy smile using lasers and role of plasma as a novel treatment technique in dentistry: An introductory review vol.8, pp.12, 2014, https://doi.org/10.18632/oncotarget.14887
  83. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension vol.7, pp.None, 2017, https://doi.org/10.1038/s41598-017-15184-0
  84. Benefits of applying low-temperature plasma treatment to wound care and hemostasis from the viewpoints of physics and pathology vol.50, pp.50, 2014, https://doi.org/10.1088/1361-6463/aa945e
  85. Laser absorption spectroscopy for measurement of He metastable atoms of a microhollow cathode plasma vol.57, pp.1, 2014, https://doi.org/10.7567/jjap.57.01aa03
  86. 비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과 vol.28, pp.1, 2014, https://doi.org/10.15269/jksoeh.2018.28.1.61
  87. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment vol.51, pp.13, 2018, https://doi.org/10.1088/1361-6463/aaafc4
  88. Cold atmospheric plasma as a potential tool for multiple myeloma treatment vol.9, pp.26, 2018, https://doi.org/10.18632/oncotarget.24649
  89. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications vol.51, pp.23, 2018, https://doi.org/10.1088/1361-6463/aab3ad
  90. Application of cold plasma for performing a typical resection of the spleen vol.4, pp.5, 2014, https://doi.org/10.1088/2057-1976/aadb2d
  91. Effect of cold atmospheric plasma (CAP) on human adenoviruses is adenovirus type-dependent vol.13, pp.10, 2014, https://doi.org/10.1371/journal.pone.0202352
  92. Plasma Farming: Non-Thermal Dielectric Barrier Discharge Plasma Technology for Improving the Growth of Soybean Sprouts and Chickens vol.1, pp.2, 2018, https://doi.org/10.3390/plasma1020025
  93. Plasma cupping induces VEGF expression in skin cells through nitric oxide-mediated activation of hypoxia inducible factor 1 vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-40086-8
  94. Short exposure to cold atmospheric plasma induces senescence in human skin fibroblasts and adipose mesenchymal stromal cells vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-45191-2
  95. Aspergillus oryzae spore germination is enhanced by non-thermal atmospheric pressure plasma vol.9, pp.None, 2014, https://doi.org/10.1038/s41598-019-47705-4
  96. Fluorescence measurements of peroxynitrite/peroxynitrous acid in cold air plasma treated aqueous solutions vol.21, pp.17, 2019, https://doi.org/10.1039/c9cp00871c
  97. High-voltage applications of the triboelectric nanogenerator-Opportunities brought by the unique energy technology vol.6, pp.None, 2019, https://doi.org/10.1557/mre.2020.2
  98. The future for plasma science and technology vol.16, pp.1, 2014, https://doi.org/10.1002/ppap.201800118
  99. Electron characterization in weakly ionized collisional plasmas: from principles to techniques vol.4, pp.1, 2019, https://doi.org/10.1080/23746149.2018.1526114
  100. Regulation of Redox Homeostasis by Nonthermal Biocompatible Plasma Discharge in Stem Cell Differentiation vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2318680
  101. Improved Wound Healing of Airway Epithelial Cells Is Mediated by Cold Atmospheric Plasma: A Time Course-Related Proteome Analysis vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/7071536
  102. ROS from Physical Plasmas: Redox Chemistry for Biomedical Therapy vol.2019, pp.None, 2014, https://doi.org/10.1155/2019/9062098
  103. Spatially resolved laser absorption spectroscopy on a micro-hollow cathode He plasma vol.58, pp.1, 2019, https://doi.org/10.7567/1347-4065/aaec19
  104. Liquid dynamics in response to an impinging low-temperature plasma jet vol.52, pp.7, 2014, https://doi.org/10.1088/1361-6463/aaf460
  105. Plasma-sensitive Escherichia coli mutants reveal plasma resistance mechanisms vol.16, pp.152, 2014, https://doi.org/10.1098/rsif.2018.0846
  106. Development of continuous metal patterns using two-dimensional atmospheric-pressure plasma-jet: on application to fabricate electrode on a flexible surface for film touch sensor vol.29, pp.4, 2014, https://doi.org/10.1088/1361-6439/ab0705
  107. Investigation of the mechanism of enhanced and directed differentiation of neural stem cells by an atmospheric plasma jet: A gene-level study vol.125, pp.16, 2014, https://doi.org/10.1063/1.5060650
  108. Design and characteristics investigation of a miniature low-temperature plasma spark discharge device vol.21, pp.5, 2019, https://doi.org/10.1088/2058-6272/aaf111
  109. Progress and perspectives in dry processes for emerging multidisciplinary applications: how can we improve our use of dry processes? vol.58, pp.5, 2014, https://doi.org/10.7567/1347-4065/ab163a
  110. Effect of liquid-dissolved gas components on concentrations of the aqueous reactive oxygen and nitrogen species vol.125, pp.22, 2014, https://doi.org/10.1063/1.5085258
  111. Cold atmospheric plasma-induced acidification of tissue surface: visualization and quantification using agarose gel models vol.52, pp.24, 2014, https://doi.org/10.1088/1361-6463/ab1119
  112. The molecular chaperone Hsp33 is activated by atmospheric-pressure plasma protecting proteins from aggregation vol.16, pp.155, 2014, https://doi.org/10.1098/rsif.2018.0966
  113. Liquid-type non-thermal atmospheric plasma ameliorates vocal fold scarring by modulating vocal fold fibroblast vol.244, pp.10, 2014, https://doi.org/10.1177/1535370219850084
  114. Modulation of Metamorphic and Regenerative Events by Cold Atmospheric Pressure Plasma Exposure in Tadpoles, Xenopus laevis vol.9, pp.14, 2014, https://doi.org/10.3390/app9142860
  115. Sublethal treatment with plasma-activated medium induces senescence-like growth arrest of A549 cells: involvement of intracellular mobile zinc vol.65, pp.1, 2014, https://doi.org/10.3164/jcbn.19-17
  116. Plasma activated radix arnebiae oil as innovative antimicrobial and burn wound healing agent vol.52, pp.33, 2019, https://doi.org/10.1088/1361-6463/ab234c
  117. Regeneration and Repair of Skin Wounds: Various Strategies for Treatment vol.18, pp.3, 2014, https://doi.org/10.1177/1534734619859214
  118. Wound Healing Potential of Low Temperature Plasma in Human Primary Epidermal Keratinocytes vol.16, pp.6, 2019, https://doi.org/10.1007/s13770-019-00215-w
  119. Plasma skincare device based on floating electrode dielectric barrier discharge vol.21, pp.12, 2014, https://doi.org/10.1088/2058-6272/ab428a
  120. Delivery and quantification of hydrogen peroxide generated via cold atmospheric pressure plasma through biological material vol.52, pp.50, 2014, https://doi.org/10.1088/1361-6463/ab4539
  121. The Role of Thermal Effects in Plasma Medical Applications: Biological and Calorimetric Analysis vol.9, pp.24, 2014, https://doi.org/10.3390/app9245560
  122. Immediate intervention effect of dielectric barrier discharge on acute inflammation in rabbit’s ear wound vol.10, pp.2, 2014, https://doi.org/10.1063/1.5139953
  123. Evaluation of the bactericidal effect of cold atmospheric pressure plasma on contaminated human bone: an in vitro study vol.58, pp.3, 2020, https://doi.org/10.1016/j.bjoms.2020.01.003
  124. 1D fluid model of RF-excited cold atmospheric plasmas in helium with air gas impurities vol.27, pp.4, 2020, https://doi.org/10.1063/1.5145033
  125. Time-resolved characterization of a free plasma jet formed off the surface of a piezoelectric crystal vol.29, pp.4, 2014, https://doi.org/10.1088/1361-6595/ab7987
  126. A Dielectric Barrier Discharge Plasma Degrades Proteins to Peptides by Cleaving the Peptide Bond vol.40, pp.3, 2020, https://doi.org/10.1007/s11090-019-10053-2
  127. Effect of DC micro-plasma treatment on bacteria in its vegetative bacteria vol.863, pp.None, 2014, https://doi.org/10.1088/1757-899x/863/1/012031
  128. Effect of external axial magnetic field on a helium atmospheric pressure plasma jet and plasma-treated water vol.53, pp.21, 2020, https://doi.org/10.1088/1361-6463/ab78d6
  129. The efficacy and safety of cold atmospheric plasma as a novel therapy for diabetic wound in vitro and in vivo vol.17, pp.3, 2020, https://doi.org/10.1111/iwj.13341
  130. Anticancer Effects of Cold Atmospheric Plasma in Canine Osteosarcoma Cells vol.21, pp.12, 2020, https://doi.org/10.3390/ijms21124556
  131. Positive Effect of Cold Atmospheric Nitrogen Plasma on the Behavior of Mesenchymal Stem Cells Cultured on a Bone Scaffold Containing Iron Oxide-Loaded Silica Nanoparticles Catalyst vol.21, pp.13, 2014, https://doi.org/10.3390/ijms21134738
  132. Effect of Cold Atmospheric Plasma Therapy vs Standard Therapy Placebo on Wound Healing in Patients With Diabetic Foot Ulcers : A Randomized Clinical Trial vol.3, pp.7, 2020, https://doi.org/10.1001/jamanetworkopen.2020.10411
  133. Effects of Plasma-Activated Water on Skin Wound Healing in Mice vol.8, pp.7, 2014, https://doi.org/10.3390/microorganisms8071091
  134. Influence of Plasma-Activated Water on Physical and Physical-Chemical Soil Properties vol.12, pp.9, 2014, https://doi.org/10.3390/w12092357
  135. Non-thermal dielectric-barrier discharge plasma induces reactive oxygen species by epigenetically modifying the expression of NADPH oxidase family genes in keratinocytes vol.37, pp.None, 2014, https://doi.org/10.1016/j.redox.2020.101698
  136. The effect of non‐thermal atmospheric pressure plasma application on wound healing after gingivectomy vol.17, pp.5, 2020, https://doi.org/10.1111/iwj.13379
  137. The formation of atomic oxygen and hydrogen in atmospheric pressure plasmas containing humidity: picosecond two-photon absorption laser induced fluorescence and numerical simulations vol.29, pp.10, 2014, https://doi.org/10.1088/1361-6595/abab55
  138. Cold Plasma Treatment Accelerates Regeneration of the Skin after Mechanical Damage vol.54, pp.4, 2020, https://doi.org/10.1007/s10527-020-10019-1
  139. The Effect of Plasma Treatment on the Speed of Healing of Wounds Similar to battle wounds vol.928, pp.None, 2014, https://doi.org/10.1088/1757-899x/928/7/072103
  140. The Effect of Plasma Treatment on the Speed of Healing of Wounds Similar to battle wounds vol.928, pp.None, 2014, https://doi.org/10.1088/1757-899x/928/7/072103
  141. Analysis of Hydroxyl Radical and Hydrogen Peroxide Generated in Helium-Based Atmospheric-Pressure Plasma Jet and in Different Solutions Treated by Plasma for Bioapplications vol.9, pp.11, 2014, https://doi.org/10.1149/2162-8777/ab9c78
  142. Thin Film Deposition by Atmospheric Pressure Dielectric Barrier Discharges Containing Eugenol: Discharge and Coating Characterizations vol.12, pp.11, 2020, https://doi.org/10.3390/polym12112692
  143. TRPA1 and TRPV1 channels participate in atmospheric-pressure plasma-induced [Ca 2+ ] i response vol.10, pp.None, 2014, https://doi.org/10.1038/s41598-020-66510-y
  144. Effects of Nonthermal Plasma on Morphology, Genetics and Physiology of Seeds: A Review vol.9, pp.12, 2014, https://doi.org/10.3390/plants9121736
  145. Wound treatment by low-temperature atmospheric plasmas and issues in plasma engineering for plasma medicine vol.59, pp.12, 2020, https://doi.org/10.35848/1347-4065/abc3a0
  146. Efficacy of Low-temperature Plasma for Treatment of Facial Rejuvenation in Asian Population vol.9, pp.9, 2021, https://doi.org/10.1097/gox.0000000000003812
  147. Cell cycle regulation in human hair follicle dermal papilla cells using nonthermal atmospheric pressure plasma-activated medium vol.100, pp.13, 2014, https://doi.org/10.1097/md.0000000000025409
  148. Molecular Mechanisms Underlying Cellular Responses to the Loading of Non-thermal Atmospheric Pressure Plasma-activated Solutions vol.141, pp.10, 2014, https://doi.org/10.1248/yakushi.21-00134
  149. Generation, Detection and Bio-protection of Reactive Oxygen Species/Free Radicals vol.141, pp.12, 2021, https://doi.org/10.1248/yakushi.21-00164
  150. Redox Enzymes of the Thioredoxin Family as Potential and Novel Markers in Pemphigus vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/6672693
  151. Head and Neck Cancer Cell Death due to Mitochondrial Damage Induced by Reactive Oxygen Species from Nonthermal Plasma-Activated Media: Based on Transcriptomic Analysis vol.2021, pp.None, 2014, https://doi.org/10.1155/2021/9951712
  152. Transdermal delivery of topical lidocaine in a mouse model is enhanced by treatment with cold atmospheric plasma vol.20, pp.2, 2021, https://doi.org/10.1111/jocd.13581
  153. Analysing Mouse Skin Cell Behaviour under a Non-Thermal kHz Plasma Jet vol.11, pp.3, 2014, https://doi.org/10.3390/app11031266
  154. Molecular mechanisms of non-thermal atmospheric pressure plasma-induced cellular responses vol.60, pp.2, 2014, https://doi.org/10.35848/1347-4065/abd496
  155. Selective inhibition of melanoma and basal cell carcinoma cells by short-lived species, long-lived species, and electric fields generated from cold plasma vol.129, pp.16, 2014, https://doi.org/10.1063/5.0041218
  156. Fabrication of Photoactive Electrospun Cellulose Acetate Nanofibers for Antibacterial Applications vol.14, pp.9, 2014, https://doi.org/10.3390/en14092598
  157. The Effect of Non-Thermal Plasma on the Structural and Functional Characteristics of Human Spermatozoa vol.22, pp.9, 2014, https://doi.org/10.3390/ijms22094979
  158. Non-Thermal Atmospheric Pressure Argon-Sourced Plasma Flux Promotes Wound Healing of Burn Wounds and Burn Wounds with Infection in Mice through the Anti-Inflammatory Macrophages vol.11, pp.12, 2014, https://doi.org/10.3390/app11125343
  159. Inhibitory Effect of Cold Atmospheric Plasma on Chronic Wound-Related Multispecies Biofilms vol.11, pp.12, 2014, https://doi.org/10.3390/app11125441
  160. Cold Atmospheric Plasma Promotes the Immunoreactivity of Granulocytes In Vitro vol.11, pp.6, 2014, https://doi.org/10.3390/biom11060902
  161. Moving toward a Handheld “Plasma” Spectrometer for Elemental Analysis, Putting the Power of the Atom (Ion) in the Palm of Your Hand vol.26, pp.16, 2014, https://doi.org/10.3390/molecules26164761
  162. Cold Atmospheric Plasma (CAP) Technology and Applications vol.6, pp.2, 2014, https://doi.org/10.2200/s01107ed1v01y202105mec035
  163. Analgesic effect of topical lidocaine is enhanced by cold atmospheric plasma pretreatment in facial CO2 laser treatments vol.20, pp.9, 2014, https://doi.org/10.1111/jocd.13983
  164. Energy efficiency of voltage waveform tailoring for the generation of excited species in RF plasma jets operated in He/N2 mixtures vol.30, pp.9, 2021, https://doi.org/10.1088/1361-6595/ac1c4d
  165. Flow Spin-trapping ESR Detection of •OH and •H Radicals Derived from Helium Atmospheric-pressure Plasma at Gas-Liquid Interface Employing a Micro Open-flow Reactor vol.50, pp.9, 2014, https://doi.org/10.1246/cl.210282
  166. Plasma Bioscience and Medicines vol.30, pp.5, 2014, https://doi.org/10.5757/asct.2021.30.5.118
  167. Anti-Bacterial Action of Plasma Multi-Jets in the Context of Chronic Wound Healing vol.11, pp.20, 2014, https://doi.org/10.3390/app11209598
  168. Microplasma Treatment versus Negative Pressure Therapy for Promoting Wound Healing in Diabetic Mice vol.22, pp.19, 2014, https://doi.org/10.3390/ijms221910266
  169. The evaluation of efficacy of atmospheric pressure plasma in diabetic ulcers healing: A randomized clinical trial vol.34, pp.6, 2014, https://doi.org/10.1111/dth.15169
  170. The Anti-Fibrotic Effect of Cold Atmospheric Plasma on Localized Scleroderma In Vitro and In Vivo vol.9, pp.11, 2014, https://doi.org/10.3390/biomedicines9111545
  171. Non-thermal atmospheric pressure plasma as a powerful tool for the synthesis of rhenium-based nanostructures for the catalytic hydrogenation of 4-nitrophenol vol.11, pp.61, 2014, https://doi.org/10.1039/d1ra07416d
  172. Cold Atmospheric Plasma, Platelet-Rich Plasma, and Nitric Oxide Synthesis Inhibitor: Effects Investigation on an Experimental Model on Rats vol.12, pp.2, 2014, https://doi.org/10.3390/app12020590
  173. Improvement of Nanostructured Polythiophene Film Uniformity Using a Cruciform Electrode and Substrate Rotation in Atmospheric Pressure Plasma Polymerization vol.12, pp.1, 2022, https://doi.org/10.3390/nano12010032
  174. Cold helium plasma jet does not stimulate collagen remodeling in a 3D human dermal substitute vol.143, pp.None, 2014, https://doi.org/10.1016/j.bioelechem.2021.107985