DOI QR코드

DOI QR Code

와이어 기반의 적응형 로봇 핸드

Tendon-driven Adaptive Robot Hand

  • 투고 : 2014.08.04
  • 심사 : 2014.10.27
  • 발행 : 2014.11.28

초록

An adaptive robot hand (AR-Hand) has a stable grasp of different objects in unstructured environments. In this study, we propose an AR-Hand based on a tendon-driven mechanism which consists of 4 fingers and 12 DOFs. It weighs 0.5 kg and can grasp an object up to 1 kg. This hand based on the adaptive grasp mechanism is able to provide a stable grasp without a complex control algorithm or sensor system. The fingers are driven by simple tendon structures with each finger capable of adaptively grasping the objects. This paper presents a method to decide the joint stiffness. The adaptive grasping is verified by various grasping experiments involving objects with different shapes and sizes.

키워드

참고문헌

  1. E. H. Kim, S. W. Lee, and Y. K. Lee, "A Dexterous Robot Hand with a Bio-mimetic Mechanism," Int. J. Precision Engineering and Manufacturing, Vol. 12, No. 2, pp. 227-235, 2011. https://doi.org/10.1007/s12541-011-0031-x
  2. Li Guoxuan, Li Bowen, Sun Jie, Zhang Wenzeng, Sun Zhenguo, and Chen Qiang, "Development of a Directly Self-adaptive Robot Hand with Pulley-belt Mechanism," Int. J. of Precision Engineering and Manufacturing, Vol. 14, No. 8, pp. 1361-1368, 2013. https://doi.org/10.1007/s12541-013-0184-x
  3. S. C. Jacobsen, E. K. Iversen, D. F. Knutti, R. T. Johnson, and K. B. Biggers, "Design of The UTAH/M.I.T. Dexterous Hand", IEEE Int. Conf. on Robotics and Automation, Vol. 3, pp. 1520-1532, 1986.
  4. J. Butterfass, M. Grebenstein, H. Liu, and G. Hirzinger, "DLR-Hand II: next generation of a dexterous robot hand", IEEE Int. Conf. on Robotics and Automation, Vol. 1, pp. 109-114, 2001.
  5. J. K. Salisbury, and J. J. Craig, "Articulated Hands: Force Control and Kinematic Issues," Int. Journal of Robotics Research, Vol. 1, No. 1, pp. 4-17, 1982. https://doi.org/10.1177/027836498200100102
  6. H. D. Yang, S. W. Park, J. H. Park, J. H. Bae, and M. H. Baeg, "Development of a 16 DOF Anthropomorphic Robot Hand with Back-Drivability Joint for Stable Grasping," The Journal of Korea Robotics Society, Vol. 6, No. 3, pp. 220-229, 2011. https://doi.org/10.7746/jkros.2011.6.3.220
  7. J. Y. Chun, B. J. Choi, H. S. Chae, H. P. Moon, and H. R. Choi, "Design and Control of Anthropomorphic Robot hand," The Journal of Korea Robotics Society, Vol. 5, No. 2, pp. 102-109, 2010.
  8. F. Lotti, P. Tiezzi, G. Vassura, L. Biagiotti, G. Palli, and C. Melchiorri, "Development of UB Hand 3: Early Results," IEEE Int. Conf. on Robotics and Automation, pp. 4488-4493, 2005.
  9. A. M. Dollar, and R. D. Howe, "The SDM hand as a prosthetic terminal device: A feasibility study," IEEE 10th Int. Conf. on Rehabilitation Robotics, pp. 978-983, 2007.
  10. G. Grioli, M. Catalano, E. Silvestro, S. Tono, and A. Bicchi, "Adaptive Synergies: an approach to the design of under-actuated robotic hands," IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1251-1256, 2012.
  11. R. Lazzarini, M. R. Cutkosky, and P. Dario, "The SPRING Hand: Development of a Self-Adaptive Prosthesis for Restoring Natural Grasping," Autonomous Robots, Vol. 16, pp. 125-141, 2004. https://doi.org/10.1023/B:AURO.0000016863.48502.98
  12. J. L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, and W. Van Moorleghem, "The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects," Autonomous Robots, Vol. 16, No. 2, pp. 143-163, 2004. https://doi.org/10.1023/B:AURO.0000016862.38337.f1
  13. W. Licheng, G. Carbone, and M. Ceccarelli, "Designing an underactuated mechanism for a 1 active DOF finger operation," Int. J. Mechanism and Machin Theory, Vol. 44, pp. 336-348, 2009. https://doi.org/10.1016/j.mechmachtheory.2008.03.011
  14. A.T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen "Automatic grasp planning using shape primitives," IEEE Int. Conf. on Intelligent Robots and Systems, Vol. 2, pp. 1824-1829, 2003.

피인용 문헌

  1. Improvement of an Underactuated Prosthetic Hand Based on Grasp Performance Evaluation vol.40, pp.10, 2016, https://doi.org/10.3795/KSME-A.2016.40.10.843
  2. Force and Pose control for Anthropomorphic Robotic Hand with Redundancy vol.10, pp.4, 2015, https://doi.org/10.7746/jkros.2015.10.4.179
  3. Slip Considered Design and Analysis Pincers-type Gripper for Seizing Heavy-weighted Cylindrical Objects vol.10, pp.4, 2015, https://doi.org/10.7746/jkros.2015.10.4.193
  4. 손과 팔의 협업에 의한 로봇 펙인홀 작업 vol.10, pp.1, 2014, https://doi.org/10.7746/jkros.2015.10.1.042
  5. 국립재활원 외골격 로봇(NREX)의 손 모듈 개발 vol.10, pp.3, 2015, https://doi.org/10.7746/jkros.2015.10.3.162
  6. 과소 구동 전동의수의 파지력 제어를 위한 햅틱 시스템 개발 vol.41, pp.5, 2014, https://doi.org/10.3795/ksme-a.2017.41.5.415
  7. 파지 안정성을 강화한 과수 수확용 로봇 그리퍼의 설계 개선 vol.15, pp.2, 2020, https://doi.org/10.7746/jkros.2020.15.2.107