DOI QR코드

DOI QR Code

Rhanella aquatilis 유래 당단백질의 면역세포에 미치는 영향

Effect on Immune Cells of Proteoglycan Originating from Rhanella aquatilis

  • Park, Hae-Gi (Department of Life Science and Biotechnology, Dong-eui University) ;
  • Kim, Kwang-Hyeon (Department of Life Science and Biotechnology, Dong-eui University)
  • 투고 : 2014.07.11
  • 심사 : 2014.08.11
  • 발행 : 2014.09.28

초록

인체 면역증강제로 활용 가능성을 조사하기 위해 R. aquatilis AY2000 균이 생산하는 당단백질인 AYS의 면역세포에 대한 독성과 면역증강 효과를 조사하였다. 그 결과 AYS는 적혈구에 대한 용혈작용과 hPBMC에 대한 증식 또는 사멸효과는 나타내지 않았으나, 배양 중인 hPBMC를 응집시키는 효과를 나타내었다. 또한 AYS는 in vitro에서 hPBMC에 작용하여 염증성 cytokine인 IL-6, IFN-${\gamma}$, TNF-${\alpha}$와 IL-5 생성을 유도하였고, 생쥐에서 AYS는 alum에 비해 항-BSA의 생산력을 더욱 증가시켰다.

So as to evaluate its use an immune stimulator in humans, the toxicity and action against immune cells by an anti-yeast substance (AYS), a bacterial proteoglycan, were investigated. The AYS did not possess hemolytic activity with human red blood cells (hRBC). Nor did it exhibit cytotoxicity against human peripheral blood mononuclear cells (hPBMC). In addition, the AYS did not induce hPBMC proliferation, but it did agglutinate hPBMCs in vitro. Moreover, hPBMC induced inflammatory cytokines such as IL-6, IL-5, IFN-${\gamma}$ and TNF-${\alpha}$ with the AYS during culture. Compared with alum, the AYS as an adjuvant has an increased antibody production rate against bovine serum albumin (BSA) in mice.

키워드

요 약

인체 면역증강제로 활용 가능성을 조사하기 위해 R. aquatilis AY2000 균이 생산하는 당단백질인 AYS의 면역세포에 대한 독성과 면역증강 효과를 조사하였다. 그 결과 AYS는 적혈구에 대한 용혈작용과 hPBMC에 대한 증식 또는 사멸효과는 나타내지 않았으나, 배양 중인 hPBMC를 응집시키는 효과를 나타내었다. 또한 AYS는 in vitro에서 hPBMC에 작용하여 염증성 cytokine인 IL-6, IFN-γ, TNF-α와 IL-5 생성을 유도하였고, 생쥐에서 AYS는 alum에 비해 항-BSA의 생산력을 더욱 증가시켰다.

참고문헌

  1. Alan J, Robin T. 1982. Immunochemistry in practice. pp. 257-260. 2nd Ed. Blackwell Scientific Publications, London.
  2. Alexander BD, Erik BL, Ernesto OO. 2011. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol. Lett. 203: 97-105. https://doi.org/10.1016/j.toxlet.2011.03.001
  3. Ciapetti G, Cenni E, Pratelli L, Pizzoferrato A. 1993. In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials 14: 359-364. https://doi.org/10.1016/0142-9612(93)90055-7
  4. Higgins D, Marshall JD, Traquinia P, Van Nest G, Livingston BD. 2007. Immunostimulatory DNA as a vaccine adjuvant. Expert. Rev. Vaccines 6: 747-759. https://doi.org/10.1586/14760584.6.5.747
  5. Khajuria A, Gupta A, Malik F, Singh S, Singh J, Gupta BD, et al. 2007. A new vaccine adjuvant (BOS 2000) a potent enhancer mixed Th1/Th2 immune responses in mice immunized with HBsAg. Vaccine 25: 4586-4594. https://doi.org/10.1016/j.vaccine.2007.03.051
  6. Lingnau K, Riedl K, von Gabain A. 2007. IC31 and IC30, novel types of vaccine adjuvant based on peptide delivery systems. Expert Rev. Vaccines 6: 741-746. https://doi.org/10.1586/14760584.6.5.741
  7. Mbow ML, de Gregorio E, Ulmer JB. 2011. Alum's adjuvant action: grease is the word. Nat. Med. 17: 415-416. https://doi.org/10.1038/nm0411-415
  8. Muller BW, Bock T. 1994. A novel assay to determine the hemolytic activity of drug incorporated in colloidal carriers systems. Pharm. Res. 11: 589-591. https://doi.org/10.1023/A:1018987120738
  9. O'Hagan DT, Ott GS, de Gregorio E, Seubert A. 2012. The mechanism of action of MF59 - an innately attractive adjuvant formulation. Vaccine 30: 4341. https://doi.org/10.1016/j.vaccine.2011.09.061
  10. Park HJ, Kang MJ, Lee JH, Kim KH. 2011. Action pattern of anti-yeast substance originated from Rhanella aquatilis strain AY2000. Korean J. Microbiol. 47: 163-166.
  11. Schijns VE, Lavelle EC. 2011. Trends in vaccine adjuvants. Expert. Rev. Vaccines 10: 539. https://doi.org/10.1586/erv.11.21
  12. Tomljenovic L, Shaw CA. 2012. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatiric populations. Lupus 21: 223-230. https://doi.org/10.1177/0961203311430221
  13. Wang W, Singh M. 2011. Selection of adjuvants for enhanced vaccine potency. World J. Vaccines 1: 33-78. https://doi.org/10.4236/wjv.2011.12007