DOI QR코드

DOI QR Code

Preparation of Porous Separators for Zn Air Batteries through Phase Inversions of Polyetherimide-PVP Solutions

Polyetherimide-PVP 용액의 상전이를 통한 아연공기전지의 다공성 분리막 제조

  • Cho, Yu Song (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Kim, Young Kyoung (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education) ;
  • Koo, Ja-Kyung (School of Energy.Materials and Chemical Engineering, Korea University of Technology and Education)
  • 조유송 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 김영경 (한국기술교육대학교 에너지.신소재.화학공학부) ;
  • 구자경 (한국기술교육대학교 에너지.신소재.화학공학부)
  • Received : 2014.05.12
  • Accepted : 2014.06.25
  • Published : 2014.06.30

Abstract

Polyetherimide (PEI) membranes for separators in Zn air batteries were prepared via phase inversion process from casting solution composed of PEI, n-methylpyrolidone (NMP), and polyvinylpurrolidone (PVP). Furthermore, Zn air batteries were fabricated with the separators. The effects of PEI content and PVP addition in the casting solution on the morphology, mechanical strength, ionic conductivity were investigated through SEM, stress-strain test and ac impedance test. The elelctrochemical performances of the batteries were evaluated through galvanostatic discharge analysis. The mechanical strength of the membrane increased with increasing PEI composition in the casting solution. Little effect of PVP addition into the solution on the mechanical strength of the membrane was investigated. The ionic conductivity value decreased with increasing PEI composition in the solution. With addition of PVP, ionic conductivity of membrane increased until 10 wt% to show the maximum value of 0.1 S/cm. In the higher range of PVP addition over 10%, the ionic conductivity decreased with increasing PVP addition. Ionic conductivity of separator strongly affected the capacity of Zn air battery, and the battery assembled with the separator which showed high ionic conductivity showed high capacity.

아연공기전지의 분리막으로 사용하기 위한 Polyetherimide (PEI) 재질의 막을 제조하였다. 막의 제조는 상전이법을 통하여 이루어졌으며, 캐스팅 용액은 PEI, n-methylpyrolidone (NMP) 및 polyvinylpyrolidone (PVP)으로 이루어졌다. 제조한 분리막을 이용하여 아연공기전지를 제작하였다. 캐스팅 용액 내의 PEI 함량과 캐스팅 용액에 대한 PVP 첨가량이 분리막의 모폴로지, 기계적 강도와 이온전도도에 미치는 영향은 각각 SEM, 인장강도실험 및 임피던스 실험을 통하여 측정, 평가하였다. 아연공기전지의 전기화학적 성능은 정전류 방전실험을 통하여 측정하였다. 캐스팅 용액 중의 PEI 함량이 증가함에 따라 분리막의 기계적 강도는 증가하였으며, 캐스팅 용액에의 PVP 첨가는 분리막의 기계적 강도에 큰 영향을 미치지 않았다. 용액 내의 PEI 함량이 증가하면서 분리막의 이온전도도는 감소하였다. 용액에 PVP를 첨가하는 데에 있어서 첨가량 10 wt%까지는 첨가량의 증가에 따라 분리막의 이온전도도는 증가하였다. PVP 첨가량이 10 wt%에서 이온전도도는 0.1 S/cm의 최대값을 보인 후 추가의 첨가에 따라서는 이온전도도가 감소하였다. 분리막의 이온전도도는 공기아연전지의 용량에 큰 영향을 미쳤으며, 높은 이온전도도를 갖는 분리막으로 제조한 전지가 높은 용량을 보였다.

Keywords

References

  1. J. H. Kim, S. W. Eom, S. I. Moon, M. S. Yun, and J. Y. Kim, "Effect of the conducting agent on characteristics of cathode for Zn/air batteries", J. Kor. Electrochem. Soc., 5, 74 (2002). https://doi.org/10.5229/JKES.2002.5.2.074
  2. J. H. Kim, S. W. Eom, S. I. Moon, M. S. Yun, and J. Y. Kim, "Development of zinc air battery for cellular phone", J. Kor. Inst. Electr. Electronic. Mat. Eng., 17, 936 (2004).
  3. G. M. Wu, S. J. Lin, and C. C. Yang, "Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes". J. Membr. Sci., 275, 127 (2006). https://doi.org/10.1016/j.memsci.2005.09.012
  4. C. Kim and J. K. Koo, "Preparation of gel polymer electrolyte membranes of polyvinyl alcohol and poly(acrylic acid) for Zn air batteries", Membrane Journal, 22, 208 (2012).
  5. G. M. Wu, S. J. Lin, and C. C. Yang, "Preparation and characterization of high ionic conducting alkaline non-woven membranes by sulfonation", J. Membr. Sci., 275, 120 (2006).
  6. G. M. Wu, S. J. Lin, J. H. You, and C. C. Yang, "Study of high anionic conducting sulfonated microporous membranes for zinc-air electrochemical cells", Mater. Chem. Phys., 112, 798 (2009).
  7. Y. S. Cho and J.-K Koo, "Preparation of porous separators for Zn air batteries through phase inversions of polyethersulfone-PVP solutions", Membrane Journal, 24, 10 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.10
  8. M. J. Kim, S. D. Lee, and K. H. Youm, "Effect of inorganic salt additives on formation of phase-inversion polyethersulfone ultrafiltration membrane", Membrane Journal, 12, 75 (2002).
  9. N. Kim, "Preparation and characterization of PSF membranes by phosphoric acid and 2-butoxyethanol", Membrane Journal, 22, 178 (2012).
  10. D. J. Kim, H. Y. Hwang, H. J. Kim, and S. Y. Nam, "Preparation and characterization of polysulfone substrate for reinforced composite membrane fuel cell membrane", Membrane Journal, 19, 63 (2009).
  11. M. J. Han and S-T. Nam, "Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane", J. Membr. Sci., 202, 55 (2002). https://doi.org/10.1016/S0376-7388(01)00718-9
  12. B. Jung, J. K. Yoon, B. Kim, and H-W. Rhee, "Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes", J. Membr. Sci., 243, 45 (2004). https://doi.org/10.1016/j.memsci.2004.06.011
  13. R. M. Boom, I. M. Wienk, T. van den Boomgaard, and C. A. Smolders, "Microstructures in phase inversion membranes. Part 2. The role of a polymeric additive", J. Membr. Sci., 73, 277 (1992). https://doi.org/10.1016/0376-7388(92)80135-7
  14. I. Cabasso, E. Klein, and J. K. Smith, "Polysulfone hollow-fibers. I. spinning and properties", J. Appl. Polym. Sci., 20, 2377 (1976). https://doi.org/10.1002/app.1976.070200908
  15. C. M. Tam, M. Dal-Cin, and M. D. Guiver, "Polysulfone membranes. IV. performance evaluation of radel A/PVP membranes", J. Membr. Sci., 78, 123 (1993). https://doi.org/10.1016/0376-7388(93)85254-T
  16. H-T. Yeo, S-T. Lee, and M-J. Han, "Role of a Polymer additive in casting solution in preparation of phase Inversion polysulfone membranes", J. Chem. Eng. Jpn., 33, 180 (2000). https://doi.org/10.1252/jcej.33.180