DOI QR코드

DOI QR Code

Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS

OBIGGS용 공중합체 폴리이미드를 이용한 기체분리막의 투과 특성평가

  • Lee, Jung Moo (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Lee, Myung Gun (Aekyung Petrochemical Co., LTD.) ;
  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 이정무 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 이명건 (애경유화 중앙연구소) ;
  • 김득주 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2014.08.08
  • Accepted : 2014.08.20
  • Published : 2014.08.30

Abstract

We synthesized novel polyimides with high gas permeability and selectivity for application of on board inert gas generation system (OBIGGS). 2,2-bis(3,4-carboxylphenyl) hexafluoropropane dianhydride (6FDA) and two kinds of amines with high permeability and solubility were used to prepare the novel polymide. 2,3,5,6-Tetramethyl-1,4-phenylenediamine (TMPD) was used to improve gas permeability and various kinds of diamines were used to improve the gas selectivity respectively. The polyimide copolymers were synthesized by commercial chemical imidization method and their average molecular weights were over 100,000g/mol. The glass temperature ($T_g$) and the thermal degradation temperature were characterized using differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA). The synthesized copolymers showed high $T_g$ over $300^{\circ}C$ and high thermal degradation temperature over $500^{\circ}C$. The gas permeation properties were measured by time-lag equipment. Although general polyimides showed very low gas permeability, synthesized polyimide copolymer showed high $O_2$ permeability of 36.21 barrer with high $O_2/N_2$ selectivity around 4.1. From this result, we confirm that these membranes have possibility to apply to OBIGGS.

새로운 구조를 가진 폴리이미드를 이용하여 고투과, 고선택성 불활성기체충진장치용 기체 분리막을 제조하였다. 높은 기체투과도와 용해도를 나타내는 무수물인 2,2-bis(3,4-carboxylphenyl) hexafluoropropane와 두 종류의 아민을 사용하여 신규 폴리이미드를 합성하였다. 투과도를 증가시키기 위해 2,3,5,6-Tetramethyl-1,4-phenylenediamine를 사용하였고, 선택도를 높이기 위해 여러 종류의 아민을 사용하였다. 화학적 이미드화 방법으로 공중합체를 준비되었으며 100,000 g/mol 이상의 평균 분자량을 나타내었다. 합성된 고분자의 열적 특성을 분석을 하기 위해 유리전이 온도($T_g$)와 열적 특성은 시차주사열량계(DSC)와 열중량분석기(TGA)로 측정을 하였으며, 유리전이온도($T_g$)는 $300^{\circ}C$, 열분해 온도는 $500^{\circ}C$가 넘어 뛰어난 열적 특성을 보였다. 기체투과도 특성은 time-lag 장비를 사용하였으며 그 결과, 일반 폴리이미드의 경우 대부분 기체투과도가 1 barrer 이하의 수치를 보이지만, 합성된 고분자의 경우 산소투과도 36.21 barrer과 산소/질소 선택도의 경우 4.1로 고투과 고선택도를 나타내어 불활성기체 충진장치용 장치로의 적용 가능성을 확인할 수 있었다.

Keywords

References

  1. J. P. Kim, B. Y. Yeom, and B. R. Min, "Tech-trend for polymeric gas separation membranes", Polymer Science and Technology, 16, 436 (2005).
  2. D. Y. Oh and S. Y. Nam, "Developmental trend of polyimide membranes for gas separation", Membrane Journal, 21, 307 (2011).
  3. D. J. Kim and S. Y. Nam, "Research and development trends of polyimide based material for gas separation", Membrane Journal, 23, 393 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  4. J. H. Ahn, W. J. Chung, I. Pinnau, and M. D. Guiver, "Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation", J. Membr. Sci., 314, 123 (2008). https://doi.org/10.1016/j.memsci.2008.01.031
  5. B. Kruczek and T. Matsuura, "Effect of metal substitution of high molecular weight sulfonated polyphenylene oxide membranes on their gas separation performance", J. Membr. Sci., 167, 203 (2000). https://doi.org/10.1016/S0376-7388(99)00292-6
  6. M. R. Coleman and W. J. Koros, "Isomeric polyimides based on fluorinated dianhydrides and diamines for gas separation applications", J. Membr. Sci., 50, 285 (1990). https://doi.org/10.1016/S0376-7388(00)80626-2
  7. C. H. Jung, J. E. Lee, S. H. Han, H. B. Park, and Y. M. Lee, "Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation", J. Membr. Sci., 350, 301 (2010). https://doi.org/10.1016/j.memsci.2010.01.005
  8. T. S. Chung, W. H. Lin, and R. H. Vora, "Gas transport properties of 6FDA-durene/1,3-phenylenediamine (mPDA) copolyimides", J. Appl. Polym. Sci., 81, 3552 (2001). https://doi.org/10.1002/app.1812
  9. E. H. Kim, C. Y. Park, and J. H. Kim, "Gas Transport Properties of Soluble Polyimides Containing Alicyclic Dianhydride", Membrane Journal, 24, 100 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.100
  10. L. M. Robeson, "Correlation of separation factor versus permeability for polymeric membranes", J. Membr. Sci., 62, 165 (1991). https://doi.org/10.1016/0376-7388(91)80060-J
  11. E. H. Kim, C. Y. Park, and J. H. Kim, "Large improvement of the lower detection limit of ion-selective polymer membrane electrodes", J. Am. Chem. Soc., 119, 11347 (1997). https://doi.org/10.1021/ja972932h
  12. X. Duthie, S. Kentish, C. Powell, K. Nagai, G. Qiao, and G. Stevens, "Operating temperature effects on the plasticization of polyimide gas separation membranes", J. Membr. Sci., 294, 40 (2007). https://doi.org/10.1016/j.memsci.2007.02.004
  13. L. Wang, Y. Cao, M. Zhou, S. J. Zhou, and Q. Yuan, "Novel copolyimide membranes for gas separation", J. Membr. Sci., 305, 338 (2007). https://doi.org/10.1016/j.memsci.2007.08.024
  14. Y. Woo, S. Y. Oh, Y. S. Kang, and B. S. Jung, "Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell", J. Membr. Sci., 220, 31 (2003). https://doi.org/10.1016/S0376-7388(03)00185-6
  15. Y. Liu, R. Wang, and T. S. Chung, "Chemical cross-linking modification of polyimide membranes for gas separation", J. Membr. Sci., 189, 231 (2001). https://doi.org/10.1016/S0376-7388(01)00415-X
  16. J. Yin, Y. F. Ye, and Z. G. Wang, "Study on preparation and properties of polyimides containing long flexible chains in the backbone", Eur. Polym. J., 34, 1839 (1998). https://doi.org/10.1016/S0014-3057(98)00040-8
  17. S. Xiao, R. Y. M. Huang, and X. Feng, "Synthetic 6FDA-ODA copolyimide membranes for gas separation and pervaporation: Functional groups and separation properties", Polymer, 48, 5355 (2007). https://doi.org/10.1016/j.polymer.2007.07.010
  18. Y. Yang, Z. K. Zhu, J. Yin, X. Y. Wang, and Z. E. Qi, "Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods", Polymer, 40, 4407 (1999). https://doi.org/10.1016/S0032-3861(98)00675-2
  19. J. Kruse, J. Kanzow, K. Ratzke, F. Faupel, M. Heuchel, J. Frahn, and D. Hofmann, "Free volume in polyimides: positron annihilation experiments and molecular modeling", Macromolecules, 38, 9638 (2005). https://doi.org/10.1021/ma0473521
  20. C. Nagel, K. Gunther-Schade, D. Fritsch, T. Strunskus, and F. Faupel, "Free volume and transport properties in highly selective polymer membranes", Macromolecules, 35, 2071 (2002). https://doi.org/10.1021/ma011028d
  21. K. R. Lee, D. J. Liaw, B. Y. Liaw, and J. Y. Lai, "Sorption and transport properties of gases in fluoro-containing aromatic polyamide membranes", Eur. Polym. J., 34, 665 (1998). https://doi.org/10.1016/S0014-3057(97)00160-2