DOI QR코드

DOI QR Code

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica

과량 실리카 도입을 통한 고분자 전해질막 표면 개질

  • Park, Chi Hoon (Department of Energy Engineering, Hanyang University) ;
  • Kim, Ho Sang (Department of Chemical Engineering, Hanyang University) ;
  • Lee, Young Moo (Department of Energy Engineering, Hanyang University)
  • Received : 2014.07.31
  • Accepted : 2014.08.19
  • Published : 2014.08.30

Abstract

In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.

본 연구에서는 제조된 유무기 나노복합막의 치수안정성, 수소이온 전도능력 및 전기화학성능을 향상시키기 위하여 실리카 나노입자를 선정하였다. 이를 위하여, 소수성 실리카(Aerosil$^{(R)}$ 812, Degussa)와 친수성 실리카(Aerosil$^{(R)}$ 380, Degussa)를 각각 술폰화 폴리아릴렌 에테르 술폰(SPAES) 고분자 매트릭스에 도입하였다. 이들 실리카 입자들은 비이온성 분산제인(Pluronics$^{(R)}$ L64)을 사용함으로써 SPAES 매트릭스에 고르게 분산시킬 수 있었다. 실리카 함량은 최종 제조된 고분자의 미세 구조 및 특성에 중요한 영향을 미치게 된다. 따라서, 본 연구에서는 과량의 실리카가 도입된 나노 복합막의 특성을 연구하기 위하여, 실리카의 함량을 5 wt%까지 증가시켰다. 이를 통하여 소수성 실리카가 포함된 나노복합막이 실리카가 도입되지 않은 SPAES막에 비하여, 더 낮은 수소이온 전도도에도 불구하고, 29% 더 높은 전기화학 성능을 나타내는 것을 관찰하였으며, 이는 같은 소수성을 가지고 있는 촉매층과의 접합성 향상에 따른 것으로 나타났다. 이외의 나머지 복합막들 또한 실리카가 도입되지 않은 SPAES막에 비하여 높은 성능을 나타냈다.

Keywords

References

  1. A. Hamnett, "Handbook of fuel cells-fundamentals, technology and applications", John Wiley & Sons Ltd., Chichester, UK (2003).
  2. M. Kim, Y. Lee, J. Kim, H. Kim, T. Lim, and I. Moon, "Multiscale modeling and simulation of direct methanol fuel cell", Membrane Journal, 20, 29 (2010).
  3. C. H. Park, C. H. Lee, M. D. Guiver, and Y. M. Lee, "Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs)", Prog. Polym. Sci., 36, 1443 (2011). https://doi.org/10.1016/j.progpolymsci.2011.06.001
  4. K. S. Yoon, J. H. Choi, J. K. Choi, S. K. Hong, Y. T. Hong, and H. S. Byun, "Fabrication and characterization of partially covalent-crosslinked poly(arylene ether sulfone)s for use in a fuel cell", Membrane Journal, 18, 274 (2008).
  5. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membrane Journal, 21, 389 (2011).
  6. E. Vallejo, G. Pourcelly, C. Gavach, R. Mercier, and M. Pineri, "Sulfonated polyimides as proton conductor exchange membranes. Physicochemical properties and separation H+/M(z+) by electrodialysis comparison with a perfluorosulfonic membrane", J. Membr. Sci., 160, 127 (1999). https://doi.org/10.1016/S0376-7388(99)00070-8
  7. R. Wycisk and P. N. Pintauro, "Sulfonated polyphosphazene ion-exchange membranes", J. Membr. Sci., 119, 155 (1996). https://doi.org/10.1016/0376-7388(96)00146-9
  8. J. Y. Kim, S. Mulmi, C. H. Lee, H. B. Park, Y. S. Chung, and Y. M. Lee, "Preparation of organic-inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer: Proton and methanol transport with respect to nano-phase separated structure", J. Membr. Sci., 283, 172 (2006). https://doi.org/10.1016/j.memsci.2006.06.024
  9. H.-Y. Jung, K.-Y. Cho, K. A. Sung, W.-K. Kim, and J.-K. Park, "The effect of sulfonated poly(ether ether ketone) as an electrode binder for direct methanol fuel cell (DMFC)", J. Power Sources, 163, 56 (2006). https://doi.org/10.1016/j.jpowsour.2006.01.075
  10. F. Wang, M. Hickner, Y. S. Kim, T. A. Zawodzinski, and J. E. McGrath, "Direct polymerization of sulfonated poly(arylene ether sulfone) random (statistical) copolymers: candidates for new proton exchange membranes", J. Membr. Sci., 197, 231 (2002). https://doi.org/10.1016/S0376-7388(01)00620-2
  11. C. H. Lee, S. Y. Lee, Y. M. Lee, and J. E. McGrath, "Chemically tuned anode with tailored aqueous hydrocarbon binder for direct methanol fuel cells", Langmuir, 25, 8217 (2009). https://doi.org/10.1021/la900406d
  12. K.-K. Lee, T.-H. Kim, T.-S. Hwang, and Y. T. Hong, "Novel sulfonated poly(arylene ether sulfone) composite membranes containing tetraethyl orthosilicate (TEOS) for PEMFC applications", Membrane Journal, 20, 278 (2010).
  13. D. J. Kim, H. Y. Hwang, and S. Y. Nam, "Characterization of composite membranes made from sulfonated poly(arylene ether sulfone) and vermiculite with high cation exchange capacity for DMFC applications", Membrane Journal, 21, 389 (2011).
  14. D. J. Kim and S. Y. Nam, "Research trend of organic/inorganic composite membrane for polymer electrolyte membrane fuel cell", Membrane Journal, 22, 155 (2012).
  15. C. H. Lee, S. Y. Hwang, J. Y. Sohn, H. B. Park, J. Y. Kim, and Y. M. Lee, "Water-stable crosslinked sulfonated polyimide-silica nanocomposite containing interpenetrating polymer network", J. Power Sources, 163, 339 (2006). https://doi.org/10.1016/j.jpowsour.2006.09.023
  16. C. H. Lee, K. A. Min, H. B. Park, Y. T. Hong, B. O. Jung, and Y. M. Lee, "Sulfonated poly(arylene ether sulfone)-silica nanocomposite membrane for direct methanol fuel cell (DMFC)", J. Membr. Sci., 303, 258 (2007). https://doi.org/10.1016/j.memsci.2007.07.026
  17. C. H. Park, H. K. Kim, C. H. Lee, H. B. Park, and Y. M. Lee, "Nafion$^{(R)}$ nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance", J. Power Sources, 194, 646 (2009). https://doi.org/10.1016/j.jpowsour.2009.06.053