DOI QR코드

DOI QR Code

Development of New 4D Phantom Model in Respiratory Gated Volumetric Modulated Arc Therapy for Lung SBRT

폐암 SBRT에서 호흡동조 VMAT의 정확성 분석을 위한 새로운 4D 팬텀 모델 개발

  • Yoon, KyoungJun (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kwak, JungWon (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Cho, ByungChul (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Song, SiYeol (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Lee, SangWook (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Ahn, SeungDo (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Nam, SangHee (Department of Biomedical Engineering, Inje University)
  • 윤경준 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 곽정원 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 조병철 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 송시열 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 이상욱 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 안승도 (울산대학교 의과대학 서울아산병원 방사선종양학교실) ;
  • 남상희 (인제대학교 의생명공학대학 의용공학과)
  • Received : 2014.04.25
  • Accepted : 2014.06.29
  • Published : 2014.06.30

Abstract

In stereotactic body radiotherapy (SBRT), the accurate location of treatment sites should be guaranteed from the respiratory motions of patients. Lots of studies on this topic have been conducted. In this letter, a new verification method simulating the real respiratory motion of heterogenous treatment regions was proposed to investigate the accuracy of lung SBRT for Volumetric Modulated Arc Therapy. Based on the CT images of lung cancer patients, lung phantoms were fabricated to equip in $QUASAR^{TM}$ respiratory moving phantom using 3D printer. The phantom was bisected in order to measure 2D dose distributions by the insertion of EBT3 film. To ensure the dose calculation accuracy in heterogeneous condition, The homogeneous plastic phantom were also utilized. Two dose algorithms; Analytical Anisotropic Algorithm (AAA) and AcurosXB (AXB) were applied in plan dose calculation processes. In order to evaluate the accuracy of treatments under respiratory motion, we analyzed the gamma index between the plan dose and film dose measured under various moving conditions; static and moving target with or without gating. The CT number of GTV region was 78 HU for real patient and 92 HU for the homemade lung phantom. The gamma pass rates with 3%/3 mm criteria between the plan dose calculated by AAA algorithm and the film doses measured in heterogeneous lung phantom under gated and no gated beam delivery with respiratory motion were 88% and 78%. In static case, 95% of gamma pass rate was presented. In the all cases of homogeneous phantom, the gamma pass rates were more than 99%. Applied AcurosXB algorithm, for heterogeneous phantom, more than 98% and for homogeneous phantom, more than 99% of gamma pass rates were achieved. Since the respiratory amplitude was relatively small and the breath pattern had the longer exhale phase than inhale, the gamma pass rates in 3%/3 mm criteria didn't make any significant difference for various motion conditions. In this study, the new phantom model of 4D dose distribution verification using patient-specific lung phantoms moving in real breathing patterns was successfully implemented. It was also evaluated that the model provides the capability to verify dose distributions delivered in the more realistic condition and also the accuracy of dose calculation.

정위신체방사선치료(SBRT)에서 환자의 호흡에 대한 정확한 치료위치의 확보는 필수적으로 고려되어야 하며 그 정확성에 관련하여 많은 연구들이 진행되어왔다. 본 연구에서는 실제 호흡에 의한 움직임과 실제 환자 폐의 형태를 고려한 팬텀실험으로 실제 치료에서 일어나는 임상적 상황을 모사함으로 호흡 동조 부피적조절회전 방사선치료(Volumeric Modulated Arc Therapy, VMAT) 기법을 이용한 폐부 SBRT의 정확성을 분석하는 방법을 제시하고자 하였다. SBRT을 받은 폐암 환자의 CT 영상을 기반으로 3D 프린터를 이용하여 치료부위와 유사하게 폐 팬텀을 제작하였고 환자 호흡과 동일하게 움직임을 재현할 수 있도록 $QUASAR^{TM}$ 호흡 동조 구동 팬텀(Modus Medical Devices, London, Canada)에 장착하여 호흡동조 VMAT에서의 2차원 선량 분포를 평가할 수 있는 시스템을 구축하였다. 폐 팬텀은 종양부위를 중심으로 2등분하여 EBT3 필름을 삽입하고 선량분포를 측정할 수 있도록 제작되었다. 비균질 조건에서의 선량계산의 정확성을 확인하기 위하여 균질한 플라스틱 팬텀과 제작된 비균질 폐 팬텀에서 Analytical Anisotropic Algorithm (AAA)와 AcurosXB (AXB) 두가지 알고리즘으로 선량계산을 하여 비교, 분석하였다. 움직임에 대한 치료의 정확성을 평가하기 위하여 호흡동조와 비 호흡동조의 경우, 그리고 움직임이 없는 조건에서 선량분포를 취득하여 치료계획 선량에 대한 감마지표를 분석하였다. 치료부위 GTV에서의 CT number는 실제 환자의 경우 78 HU를 나타내었고 모사된 폐 팬텀의 경우 92 HU를 나타내었다. 팬텀 내 폐 조직부분은 3D프린터로 적층하는 과정에서 격자구조의 형태를 이용하여 구현하였다. 측정된 필름선량은 AAA 알고리즘을 이용한 치료계획 선량에 대하여 움직이는 팬텀에서 호흡동조의 유무에 따라 3%/3 mm 감마지표 조건하에서 각각 88%와 78%의 감마합격률을 나타내었으며, 움직임이 없는 경우 95% 이상의 감마합격률을 보였다. AXB 알고리즘을 적용하였을 경우에는 모든 경우에서 98% 이상의 합격률을 나타내었다. 균질한 플라스틱 팬텀에 대하여 측정하였을 때 두가지 선량계산 알고리즘을 포함한 모든 조건에서 99% 이상의 감마합격률을 나타내었다. 선택된 환자의 호흡 진폭이 비교적 작고 inhale보다는 exhale에 더 오래 머무르는 호흡패턴 때문에 3%/3 mm 감마 기준에서는 호흡에 따른 차이가 거의 나타나지 않은 것으로 이해되었다. 선량계산의 정확성에서는 AAA 알고리즘을 적용하였을 때보다 AXB 알고리즘을 적용하였을 때가 균질과 비균질 환경에서의 선량 분포에 따른 감마 합격률의 차이가 적게 나타남을 확인 할 수 있었다. 본 논문에서는 환자와 유사하게 제작된 폐 팬텀에 실제 환자 호흡 패턴을 연동함으로 새로운 4D 치료선량 분포 검증 방법을 제시하였고 보다 사실적인 선량분포를 반영한 개별 환자 치료의 정확성 검증이 가능할 것으로 평가되었다.

Keywords

References

  1. McNair HA, et al: Active Breathing Control (ABC) in Radical Radiotherapy of Non-small Cell Lung Cancer (NSCLC). Clin Oncol (R Coll Radiol) 19:S39 (2007)
  2. Ko YE, et al: Effectiveness of breath hold with a ABC for SRS of lung cancer. J Lung Cancer 4:42-47 (2005)
  3. D'Souza WD, et al: The use of gated and 4D CT imaging in planning for stereotactic body radiation therapy. Med Dosim 32:92-101 (2007) https://doi.org/10.1016/j.meddos.2007.01.006
  4. Wurm RE, et al: Image guided respiratory gated hypofractionated stereotactic body radiation therapy (H-SBRT) for liver and lung tumors: initial experience. Acta Oncol 45:881-889 (2006) https://doi.org/10.1080/02841860600919233
  5. Otto K, et al: Volumetric modulated arc therapy: IMRT in a single gantry arc. Med Phys 35(1):310-317 (2008) https://doi.org/10.1118/1.2818738
  6. Ulmer W, et al: A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations. Phys Med Biol 50(8):1767-1790 (2005) https://doi.org/10.1088/0031-9155/50/8/010
  7. Gifford KA, et al: Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for radiotherapy calculations. Phys Med Biol 51(9):2253 (2006) https://doi.org/10.1088/0031-9155/51/9/010
  8. Vassiliev ON, et al: Validation of a new grid-based Boltzmann equation solver for dose calculation in radiotherapy with photon beams. Phys Med Biol 55(3):581-598 (2010) https://doi.org/10.1088/0031-9155/55/3/002
  9. Keall P, et al: The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33: 3874-3900 (2006) https://doi.org/10.1118/1.2349696
  10. Li XA, et al: Point/counterpoint. Respiratory gating for radiation therapy is not ready for prime time. Med Phys 34:867-870 (2007) https://doi.org/10.1118/1.2514027
  11. Andriy Fedorov, et al: 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic Resonance Imaging 30:1323-1341 (2012) https://doi.org/10.1016/j.mri.2012.05.001
  12. A. Sam Beddar, et al: Correlation between internal fiducial tumor motion and external marker motion for liver tumors imaged with 4D-CT. International Journal of Radiation Oncology and Biology and Physics 67:630-638 (2008)
  13. Thomas SJ, et al: Relative electron density calibration of CT scanners for radiotherapy treatment planning. Br J Radiol 72:781-786 (1999) https://doi.org/10.1259/bjr.72.860.10624344
  14. Kilby W, Sage J, Rabett V, et al: Tolerance levels for quality assurance of electron density values generated from CT in radiotherapy treatment planning. Phys Med Biol 47:1485-1492 (2002) https://doi.org/10.1088/0031-9155/47/9/304

Cited by

  1. 호흡연동방사선치료시 폐암과 간암환자의 병소 움직임 크기에 따른 선량분포 차이 분석 vol.25, pp.4, 2014, https://doi.org/10.14316/pmp.2014.25.4.242
  2. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling : 3D trajectory reconstruction from CBCT projection images vol.43, pp.8, 2014, https://doi.org/10.1118/1.4958678
  3. Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides vol.28, pp.1, 2014, https://doi.org/10.14316/pmp.2017.28.1.33
  4. Evaluation of the Dosimetric Accuracy of Brain Stereotactic Radiotherapy by Using a Hybrid Quality Assurance (QA) Toolkit vol.74, pp.3, 2014, https://doi.org/10.3938/jkps.74.292
  5. Validation of absolute point dosimetry by the analytical anisotropic algorithm and Acuros XB algorithm employing intensity-modulated radiotherapy technique on an in-house develop cost-effective hetero vol.17, pp.4, 2014, https://doi.org/10.4103/jcrt.jcrt_1072_19