DOI QR코드

DOI QR Code

음식물쓰레기의 혐기성 소화 시 질소농도에 따른 수소생산 및 미생물 군집변화

Variations of Hydrogen Production and Microbial Community with Different Nitrogen Concentration During Food Waste Fermentation

  • 이풀잎 (서울과학기술대학교 환경공학과) ;
  • 이태진 (서울과학기술대학교 환경공학과)
  • Lee, Pul-Eip (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 투고 : 2014.07.02
  • 심사 : 2014.10.16
  • 발행 : 2014.10.30

초록

본 연구는 음식물 쓰레기 내 질소농도에 따른 발효과정에서 수소생성 특성과 미생물의 군집변화를 살펴보았다. 음식물 쓰레기 내 질소의 함량이 200 mg/L일 때 가장 높은 수소생산 효율을 보여주었으며, 이 때 수소생산율은 83.43 mL/g dry wt biomass/hr이였다. 질소의 함량이 600 mg/L 이상이 되면 수소생산이 저해되는 것으로 나타났으며 수소생산량과 B/A ratio (Butric acid/Acetic acid)의 비례적 상관관계는 관찰되지 않았다. 16S rDNA의 PCR-DGGE결과 대부분 군집은 Clostridium sp. 미생물로 규명되었으며 수소생성에 기여도가 큰 미생물은 Enterococcus faecium partial, Klebsiella pneumoniae strain ND6, Enterobacter sp. NCCP-231, 그리고 Clostridium algidicarnis strain E107 등으로 판명되었다.

In this study, variations of fermentative hydrogen production and microbial community were investigated with different nitrogen concentration of food waste. Optimum hydrogen production rate was acquired at 200 mg/L nitrogen concentration of the food waste. Which was eqivalent to 83.43 mL/g dry biomass/hr. However, bio-hydrogen production was inhibitedly reduced at over 600 mg/L of nitrogen concentration whereas proportional relation between hydrogen production and B/A ratio were not observed. Most dominant specie of the microbial community analyzed was Clostridium sp. throughout PCR-DGGE analysis of 16S rDNA. It revealed that most contributing microorganism producing hydrogen were Enterococcus faecium partial, Klebsiella pneumoniae strain ND6, Enterobacter sp. NCCP-231, and Clostridium algidicarnis strain E107 in this experiment.

키워드

참고문헌

  1. Scott, D. S., "Hydrogen-the case for inevitability," Int. J. Hydro. Energy, 29(3), 225-227(2004).
  2. Debabrata, D. and Veziroglu, T. N., "Hydrogen production by biological processes: a survey of literature," Int. J. Hydro. Energy, 26(1), 13-28(2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Rifkin, J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth," Penguin Putnam, New Work, US, pp. 15-17(2002).
  4. Mizuno, O., Ohara, T., Shinya, M. and Noike, T., "Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora," Water Sci. Technol., 42(3), 345-350(2000).
  5. Okamoto, M., Miyahara, T. Mizuno, O. and Noike, T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes," Water Sci. Technol., 41(3), 25-32(2000).
  6. Kang, J.-H., Kim, D. K. and Lee, T.-J., "Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment," Bioresour. Technol., 109, 239-243(2012). https://doi.org/10.1016/j.biortech.2012.01.048
  7. Ozkan, L., Tuba, H. E., Goksel, N. D., "Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield," Int. J. Hydro. Energy, 36(1), 382-389(2011). https://doi.org/10.1016/j.ijhydene.2010.10.006
  8. Jun, Y.-S., Joe, Y.-A. and Lee., T.-J., "Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater," J. Kor. Soc. Environ. Eng., 31(2), 139-146(2009).
  9. Wesley, W. and Jr., Eckenfelder, Industrial Water Pollution Control, 3rd ed,, Mc Graw-Hill, New york, pp. 422(2000).
  10. Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y., "Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora," J. Biosci. Bioeng., 92(4), 397-400(2001). https://doi.org/10.1016/S1389-1723(01)80247-4
  11. Hiraishi, A., "Respiratory quinone profiles as tool for identifying different bacterial populations in activated sludge.," J. Gen. Appl. Microbiol., 34(1), 39-56(1988). https://doi.org/10.2323/jgam.34.39
  12. Chen, X., Sun, Y., Xiu, Z., Li, X. and Zhang, D., "Stoichiometric analysis of biological hydrogen production by fermentative bacteria," Int. J. Hydro. Energy, 31(4), 539-549(2006). https://doi.org/10.1016/j.ijhydene.2005.03.013
  13. Hollibaugh, J. T., Bano, N. and Ducklow, H., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria," Appl. Environ. Microbiol., 68(3), 1478-1484(2002). https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  14. Amann, R, I., Ludwig, W. and Schleifer, K.-H., "Phylogenetic identification and insitu detection of individual microbial cells without cultivation," Microbiol. Rev., 59(1), 143-169(1995).
  15. Logan, B. E., OH, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci. Technol., 36(11), 2530-2535(2002). https://doi.org/10.1021/es015783i
  16. Herbert, H. P. F. and Hong, L., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82(1), 87-93(2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  17. Chen., C. C. and Lin, C. Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7(3), 695-699(2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  18. James, T. H., Nasreen, B. and Hugh, W., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria," Appl. Environ. Microbiol., 68(3), 1478-1484(2002). https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  19. Mannix, S. P., Shin, H., Masaru, H., Rumiko, S., Chie, Y., Koichiro, H., Masaharu, I. and Yasuo, I., "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter," J. Biosci. Bioeng., 91(2), 159-165(2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  20. Auch, A. F., Henz, S. R., Holland, B. R. and Goker, M., "Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences," Bio-Med Central Bioinformatics, 7(350), 1-16(2006).
  21. Sudhir, K., Masatoshi, N., Joel, D. and Koichiro, T., "MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences," Brierings Bioinformatics, 9(4), 299-306(2008). https://doi.org/10.1093/bib/bbn017
  22. Felgenstein, J., "Confidence limits on phylogenetics: an approach using the bootstrap," Evolution, 39, 783-791(1985). https://doi.org/10.2307/2408678
  23. Kimura, M., "A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences," J. Mol. Evol., 16(2), 111-120(1980). https://doi.org/10.1007/BF01731581
  24. Saitou, N. and Nei, M., "The neighbour-joining method: a new method for constructing phylogenetic trees," Mol. Biol. Evol., 4(4), 406-425(1987).
  25. Lee., S. M., Park., J. L., Ahn., J. S., "The Study on the Alcohol Extraction from Organic Wastes by Anaerobic Digestion," J. Kor. Soc. Waste Manage., 3(2), 49-64(1986).
  26. Korea Ministry of environment Homepage, http://www.me.go.kr(2005).
  27. Chen., Y., Cheng, J. J., Creamer, K. S., "Inhibition of anaerobic digestion process: a review," Bioresour. Technol., 99(10), 4044-4064(2008). https://doi.org/10.1016/j.biortech.2007.01.057
  28. Kim, D.-H., Kim, S.-H., Shin, H.-S., "Sodium inhibition of fermentative hydrogen production," Inter. J. Hydro. Energy, 34(8), 3295-3304(2009). https://doi.org/10.1016/j.ijhydene.2009.02.051
  29. Zhang, S., Lee, Y.-H., Km, T.-H. and Hwang, S.-J., "Effects of NaCl Concentrations on Hydrogen Production and Microbial Community by Dark-fermentation," J. Kor. Soc. Waste Manage., 39(1), 46-51(2013).