DOI QR코드

DOI QR Code

Variations of Hydrogen Production and Microbial Community with Different Nitrogen Concentration During Food Waste Fermentation

음식물쓰레기의 혐기성 소화 시 질소농도에 따른 수소생산 및 미생물 군집변화

  • Lee, Pul-Eip (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 이풀잎 (서울과학기술대학교 환경공학과) ;
  • 이태진 (서울과학기술대학교 환경공학과)
  • Received : 2014.07.02
  • Accepted : 2014.10.16
  • Published : 2014.10.30

Abstract

In this study, variations of fermentative hydrogen production and microbial community were investigated with different nitrogen concentration of food waste. Optimum hydrogen production rate was acquired at 200 mg/L nitrogen concentration of the food waste. Which was eqivalent to 83.43 mL/g dry biomass/hr. However, bio-hydrogen production was inhibitedly reduced at over 600 mg/L of nitrogen concentration whereas proportional relation between hydrogen production and B/A ratio were not observed. Most dominant specie of the microbial community analyzed was Clostridium sp. throughout PCR-DGGE analysis of 16S rDNA. It revealed that most contributing microorganism producing hydrogen were Enterococcus faecium partial, Klebsiella pneumoniae strain ND6, Enterobacter sp. NCCP-231, and Clostridium algidicarnis strain E107 in this experiment.

본 연구는 음식물 쓰레기 내 질소농도에 따른 발효과정에서 수소생성 특성과 미생물의 군집변화를 살펴보았다. 음식물 쓰레기 내 질소의 함량이 200 mg/L일 때 가장 높은 수소생산 효율을 보여주었으며, 이 때 수소생산율은 83.43 mL/g dry wt biomass/hr이였다. 질소의 함량이 600 mg/L 이상이 되면 수소생산이 저해되는 것으로 나타났으며 수소생산량과 B/A ratio (Butric acid/Acetic acid)의 비례적 상관관계는 관찰되지 않았다. 16S rDNA의 PCR-DGGE결과 대부분 군집은 Clostridium sp. 미생물로 규명되었으며 수소생성에 기여도가 큰 미생물은 Enterococcus faecium partial, Klebsiella pneumoniae strain ND6, Enterobacter sp. NCCP-231, 그리고 Clostridium algidicarnis strain E107 등으로 판명되었다.

Keywords

References

  1. Scott, D. S., "Hydrogen-the case for inevitability," Int. J. Hydro. Energy, 29(3), 225-227(2004).
  2. Debabrata, D. and Veziroglu, T. N., "Hydrogen production by biological processes: a survey of literature," Int. J. Hydro. Energy, 26(1), 13-28(2001). https://doi.org/10.1016/S0360-3199(00)00058-6
  3. Rifkin, J., "The hydrogen economy: the worldwide energy web and the redistribution of the power on earth," Penguin Putnam, New Work, US, pp. 15-17(2002).
  4. Mizuno, O., Ohara, T., Shinya, M. and Noike, T., "Characteristics of hydrogen production from bean curd manufacturing waste by anaerobic microflora," Water Sci. Technol., 42(3), 345-350(2000).
  5. Okamoto, M., Miyahara, T. Mizuno, O. and Noike, T. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes," Water Sci. Technol., 41(3), 25-32(2000).
  6. Kang, J.-H., Kim, D. K. and Lee, T.-J., "Hydrogen production and microbial diversity in sewage sludge fermentation preceded by heat and alkaline treatment," Bioresour. Technol., 109, 239-243(2012). https://doi.org/10.1016/j.biortech.2012.01.048
  7. Ozkan, L., Tuba, H. E., Goksel, N. D., "Effects of pretreatment methods on solubilization of beet-pulp and bio-hydrogen production yield," Int. J. Hydro. Energy, 36(1), 382-389(2011). https://doi.org/10.1016/j.ijhydene.2010.10.006
  8. Jun, Y.-S., Joe, Y.-A. and Lee., T.-J., "Change of Microbial Community and Fermentative Production of Hydrogen from Tofu Wastewater," J. Kor. Soc. Environ. Eng., 31(2), 139-146(2009).
  9. Wesley, W. and Jr., Eckenfelder, Industrial Water Pollution Control, 3rd ed,, Mc Graw-Hill, New york, pp. 422(2000).
  10. Ueno, Y., Haruta, S., Ishii, M. and Igarashi, Y., "Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora," J. Biosci. Bioeng., 92(4), 397-400(2001). https://doi.org/10.1016/S1389-1723(01)80247-4
  11. Hiraishi, A., "Respiratory quinone profiles as tool for identifying different bacterial populations in activated sludge.," J. Gen. Appl. Microbiol., 34(1), 39-56(1988). https://doi.org/10.2323/jgam.34.39
  12. Chen, X., Sun, Y., Xiu, Z., Li, X. and Zhang, D., "Stoichiometric analysis of biological hydrogen production by fermentative bacteria," Int. J. Hydro. Energy, 31(4), 539-549(2006). https://doi.org/10.1016/j.ijhydene.2005.03.013
  13. Hollibaugh, J. T., Bano, N. and Ducklow, H., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria," Appl. Environ. Microbiol., 68(3), 1478-1484(2002). https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  14. Amann, R, I., Ludwig, W. and Schleifer, K.-H., "Phylogenetic identification and insitu detection of individual microbial cells without cultivation," Microbiol. Rev., 59(1), 143-169(1995).
  15. Logan, B. E., OH, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci. Technol., 36(11), 2530-2535(2002). https://doi.org/10.1021/es015783i
  16. Herbert, H. P. F. and Hong, L., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82(1), 87-93(2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  17. Chen., C. C. and Lin, C. Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7(3), 695-699(2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  18. James, T. H., Nasreen, B. and Hugh, W., "Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria," Appl. Environ. Microbiol., 68(3), 1478-1484(2002). https://doi.org/10.1128/AEM.68.3.1478-1484.2002
  19. Mannix, S. P., Shin, H., Masaru, H., Rumiko, S., Chie, Y., Koichiro, H., Masaharu, I. and Yasuo, I., "Denaturing gradient gel electrophoresis analyses of microbial community from field-scale composter," J. Biosci. Bioeng., 91(2), 159-165(2001). https://doi.org/10.1016/S1389-1723(01)80059-1
  20. Auch, A. F., Henz, S. R., Holland, B. R. and Goker, M., "Genome BLAST distance phylogenies inferred from whole plastid and whole mitochondrion genome sequences," Bio-Med Central Bioinformatics, 7(350), 1-16(2006).
  21. Sudhir, K., Masatoshi, N., Joel, D. and Koichiro, T., "MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences," Brierings Bioinformatics, 9(4), 299-306(2008). https://doi.org/10.1093/bib/bbn017
  22. Felgenstein, J., "Confidence limits on phylogenetics: an approach using the bootstrap," Evolution, 39, 783-791(1985). https://doi.org/10.2307/2408678
  23. Kimura, M., "A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences," J. Mol. Evol., 16(2), 111-120(1980). https://doi.org/10.1007/BF01731581
  24. Saitou, N. and Nei, M., "The neighbour-joining method: a new method for constructing phylogenetic trees," Mol. Biol. Evol., 4(4), 406-425(1987).
  25. Lee., S. M., Park., J. L., Ahn., J. S., "The Study on the Alcohol Extraction from Organic Wastes by Anaerobic Digestion," J. Kor. Soc. Waste Manage., 3(2), 49-64(1986).
  26. Korea Ministry of environment Homepage, http://www.me.go.kr(2005).
  27. Chen., Y., Cheng, J. J., Creamer, K. S., "Inhibition of anaerobic digestion process: a review," Bioresour. Technol., 99(10), 4044-4064(2008). https://doi.org/10.1016/j.biortech.2007.01.057
  28. Kim, D.-H., Kim, S.-H., Shin, H.-S., "Sodium inhibition of fermentative hydrogen production," Inter. J. Hydro. Energy, 34(8), 3295-3304(2009). https://doi.org/10.1016/j.ijhydene.2009.02.051
  29. Zhang, S., Lee, Y.-H., Km, T.-H. and Hwang, S.-J., "Effects of NaCl Concentrations on Hydrogen Production and Microbial Community by Dark-fermentation," J. Kor. Soc. Waste Manage., 39(1), 46-51(2013).