DOI QR코드

DOI QR Code

벼물바구미 (Lissorhoptrus oryzophilus) 내충성 GM 벼에서 T-DNA와 게놈의 인접부위 분석

Analysis of junction site between T-DNA and plant genome in Lissorhoptrus oryzophilus resistance GM rice

  • 이진형 (국립농업과학원 농업생명자원부) ;
  • 신공식 (국립농업과학원 농업생명자원부) ;
  • 서석철 (국립농업과학원 농업생명자원부) ;
  • 임성렬 ((주)인우코퍼레이션) ;
  • 임명호 (국립농업과학원 농업생명자원부) ;
  • 우희종 (국립농업과학원 농업생명자원부) ;
  • 친양 (국립농업과학원 농업생명자원부) ;
  • 권순종 (국립농업과학원 농업생명자원부) ;
  • 박순기 (국립농업과학원 농업생명자원부)
  • Lee, Jin-Hyoung (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Shin, Kong-Sik (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Suh, Seok-Cheol (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Rhim, Seong-Lyul (Inwoo Cooperation Ltd.) ;
  • Lim, Myung-Ho (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Woo, Hee-Jong (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Qin, Yang (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kweon, Soon-Jong (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration) ;
  • Park, Soon-Ki (Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2014.07.15
  • 심사 : 2014.09.25
  • 발행 : 2014.09.30

초록

Bacillus thuringiensis 균주로부터 분리한 cry3A 유전자는 딱정벌레목 해충에 살충성을 가지고 있어서 효율적으로 딱정벌레목 해충을 방제 할 수 있다고 알려져 있다. 국립농업과학원에서는 cry3A 유전자 형질전환벼를 육성하였고, GMO 포장 생물검정 연구를 통해 벼물바구미에 대한 내충성을 확인하였다. 본 연구에서는 벼물바구미 내충성 벼 4 계통에 대한 도입유전자 특성을 분자생물학적 방법으로 검정하여 유전자의 도입 사본 수와 도입유전자의 염기서열 등의 분석결과를 제시하였다. BT12R1 계통은 염색체 10번의 exon 부위에 도입유전자가 단일 사본으로 삽입되었으며, BT12R2 계통은 두 개의 사본으로 삽입되었고, BT12R3 계통은 LB 인근의 염기서열만 확인되었다. BT12R4 계통의 경우 단일 사본의 도입유전자가 염색체 5번의 24,516,607 ~ 24,516,636 위치에 30개의 염색체 염기서열이 결실된 상태로 삽입되었다. 이 도입위치는 벼의 내재 유전자가 발현하지 않는 intergenic 부위로 판명되었으며, 도입유전자 이외의 벡터 염기서열이 삽입되지 않음을 확인하였다. 이러한 벼물바구미 내충성벼 BT12R4 계통에 대한 분자생물학적 분석 결과는 차후 GM 작물 실용화의 환경 위해성 및 안전성 평가에 대한 기초자료로 활용할 수 있을 것으로 생각된다.

Four transgenic rice lines harboring insect-resistant gene cry3A showed ideal field performances characterized by high considerable resistance to rice water weevil (Lissorhoptrus oryzophilus Kuschel). In this study, we estimated the insertion number of foreign genes, and analyzed the flanking sequences of T-DNAs in rice genome. As a result, T-DNA of BT12R1 line was inserted in exon region of rice chromosome 10. Two copies of T-DNAs were inserted in line BT12R2. BT12R3 line was analyzed at only left border flanking sequence. BT12R4 line was confirmed one copy of foreign gene insertion at the position 24,516,607 ~ 24,516,636 of rice chromosome 5, accompanied by a deletion of 30 bp known genomic sequences. This intergenic position was confirmed none of expressed gene and any deletion/addition of T-DNA sequence. In conclusion, these molecular data of rice water weevil resistant Bt rice would be used to conduct the biosafety and environment risk assessment for GM crop commercialization.

키워드

참고문헌

  1. Bugert P, Decker S, Kluter H (2001) Improved PCR-walking for large-scale isolation of plant T-DNA borders. BioTechniques 30:496-504
  2. Espino L, Way MO, Pearson R, Nunez M (2009) Effect of planting date on Lissorhoptrus oryzophilus (Coleoptera: Curculionidae) density-yield relationship on rice in southeastern Texas. J Econ Entomol 102:1536-1545 https://doi.org/10.1603/029.102.0418
  3. De Buck S, De Wilde C, Van Montagu M, Depicker A (2000) T-DNA vector backbone sequences are frequently integrated into the genome of transgenic plants obtained by Agrobacterium mediated transformation. Mol Breed 6:459-468 https://doi.org/10.1023/A:1026575524345
  4. Gonzalez RG, Sanchez DS, Guerra ZZ, Campos JM, Quesada AL, Valdivia RM, Arencibia AD, Bravo KQ, Caligari PDS (2008) Efficient regeneration and Agrobacterium tumefaciens mediated transformation of recalcitrant sweet potato (Ipomoea batatas L.) cultivars. Asia Pac J Mo. Biol Biotechnol 16 16:25-33
  5. Hibbard BE, Clark TL, Ellersieck MR, Meihls LN, El Khishen AA, Kaster V, Steiner HY, Kurtz R (2010) Mortality of western corn rootworm larvae on MIR604 transgenic maize roots: field survivorship has no significant impact on survivorship of F1 progeny on MIR604. J Econ Entomol 103:2187-2196 https://doi.org/10.1603/EC10179
  6. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271-282 https://doi.org/10.1046/j.1365-313X.1994.6020271.x
  7. Hoefte H, Whiteley HR (1989) Insecticidal Crystal proteins of Bacillus thuringiensis. Microbiol Rev 53:242-255
  8. Japan Plant Protection Association (1986) Control of the Rice Water Weevil in Japan (in Japanese)
  9. Jouzani GS, Goldenkova IV, Piruzian ES (2008) Expression of hybrid cry3aM-licBM2 genes in transgenic potatoes (Solanum tuberusom). Plant Cell Tissue Organ Cult 92:321-325 https://doi.org/10.1007/s11240-007-9333-1
  10. Kim JH, Lee S (2007) Analysis of junction between T-DNA and plant genome in transgenic Arabidopsis thaliana. J of plant biology 50:455-460 https://doi.org/10.1007/BF03030682
  11. Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S, Ahn GH (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52:761-773 https://doi.org/10.1023/A:1025093101021
  12. Krieg, Aloisius, Huger, Alois S (1989) Protein toxin from Bacillus thuringiensis which is toxic to coleopteran. Patent US 488 9918
  13. Kononov ME, Bassuner B, Gelvin SB (1997) Integration of T-DNA vector 'backbone' sequence into the tobacco genome: evidence for multiple complex patterns of integration. Plant J 11:945-957 https://doi.org/10.1046/j.1365-313X.1997.11050945.x
  14. Kuraya Y, Ohta S, Fukuda M, Hiei Y, Murai N, Hamada K, Ueki J, Imaseki H, Komari T (2004) Suppression of transfer of non-T-DNA 'vector backbone' sequences by multiple left border repeats in vectors for transformation of higher plants mediated by Agrobacterium tumefaciens. Mol Breed 14:309-320 https://doi.org/10.1023/B:MOLB.0000047792.77219.bb
  15. Lange WH, Grigarick AA (1959) Rice water weevil, beetle pest in rice growing areas of southern states discovered in California. Calif. Agric 13(8):10-11.
  16. Lee JH, Shin KS, suh SC, Rhim SL, Lee TH, Lim MH, Woo HJ, Qin Y, Cho HS (2013) CryIIIA toxin gene expression in transgenic rice confers resistance to rice water weevil. Plant Cell Tiss Organ Cult 115:243-252. https://doi.org/10.1007/s11240-013-0356-5
  17. Rhim SL, Cho HW, Kim BD, Schnetter W, Geider K (1995) Development of insect resistance in tomato plants expressing the ${\delta}$-endotoxin gene of Bacillus thuringiensis subsp. tenebrionis. Molecular Breeding 1:229-236. https://doi.org/10.1007/BF02277423
  18. Rhim SL, Kim IG, Jin TE, Lee JH, Kuo CI, Suh SC, Huang LC (2004) Transformation of Citrus with Coleopteran Specific ${\delta}$-endotoxin Gene from Bacillus thuringiensis ssp. Tenebrionis. J Plant Biotechnol 6:21-24
  19. Saito T, Hirai K, Way MO (2005) The rice water weevil, Lissorhoptrus oryzophilus Kuschel (Coleoptera: Curculionidae). Appl Entomol Zool 40:31-39 https://doi.org/10.1303/aez.2005.31
  20. Stahl R, Horvath H, van Fleet J, Voetz M, von Wettstein D, Wolf N (2002) T-DNA integration into the barley genome from single and double cassette vectors. Proc Natl Acad Sci USA 99:2146-2151 https://doi.org/10.1073/pnas.032645299
  21. Shang H, Stout MJ, Zhang Z, Cheng J (2004) Rice water weevil (Coleoptera: Curculionidae) population dynamics in Louisiana. J Entomol 39:623-42
  22. Stout MJ, Riggio MR, Zou L, Roberts R (2002) Flooding influences ovipositional and feeding behavior of the rice water weevil (Coleoptera: Curculionidae). J Econ Entomol 95:715-21 https://doi.org/10.1603/0022-0493-95.4.715
  23. Stout MJ, Frey MJ (2007) Evaluation of thiamethoxam as a seed treatment against the rice water weevil. Ann Res Rpt Rice Res Stn LSU Agric Ctr 99:299-300
  24. Stout MJ, Hummel NA, Frey MJ, Rice WC (2011) The Impact of Planting Date on Management of the Rice Water Weevil in Louisiana Rice. J Econ Entomol 5:1-9
  25. Tohidfar M, Zare N, Jouzani GS, Eftekhari SM (2013) Agrobacterium-mediated transformation of alfalfa (Medicago sativa) using a synthetic cry3a gene to enhance resistance against alfalfa weevil. Plant Cell Tiss Organ Cult 113:227-235 https://doi.org/10.1007/s11240-012-0262-2
  26. Uhm KB, Lee YI, Kim YH, Choi KM, You KS (1989) Studies on the future dispersion of the rice water weevil, Lissorhoptrus oryzophilus, in korea. Research Report RDA 31:23-28
  27. Webb JL (1914) Notes on the rice water weevil (Lissorhoptrus simplex Say). J Econ Entomol 7:432-438 https://doi.org/10.1093/jee/7.6.432
  28. Zhai BP, Cheng JA, Huang EY, Shang HW, Zheng XH, Wu J, Fang YJ, Xia WQ, Lu XJ(1997) Population dynamics of rice water weevil in double rice cropping area of Zhejiang Province, China. Sci Agric Sin 30(6):23-29
  29. Zou L, Stout MJ, Dunand RT (2004) The effects of feeding by the rice water weevil, Lissorhoptrus oryzophilus Kuschel, on the growth and yield components of rice, Oryza sativa. Agric For Entomol 6:47-53 https://doi.org/10.1111/j.1461-9555.2004.00203.x
  30. Zhou Z, Pang J, Guo W, Zhong N, Tian Y, Xia G, Wu J (2012) Evaluation of the resistance of transgenic potato plants expressing various levels of Cry3A against the Colorado potato beetle (Leptinotarsa decemlineata Say) in the laboratory and field. Pest Manag Sci 68(12):1595-604 https://doi.org/10.1002/ps.3356