DOI QR코드

DOI QR Code

Sulfuric Acid Hydrolysis and Detoxification of Red Alga Pterocladiella capillacea for Bioethanol Fermentation with Thermotolerant Yeast Kluyveromyces marxianus

  • Wu, Chien-Hui (Department of Seafood Science, National Kaohsiung Marine University) ;
  • Chien, Wei-Chen (Department of Food Science, National Taiwan Ocean University) ;
  • Chou, Han-Kai (Department of Food Science, National Taiwan Ocean University) ;
  • Yang, Jungwoo (School of Life Science & Biotechnology for BK21 Plus, Department of Biotechnology, Korea University) ;
  • Lin, Hong-Ting Victor (Department of Food Science, National Taiwan Ocean University)
  • Received : 2014.02.19
  • Accepted : 2014.05.23
  • Published : 2014.09.28

Abstract

One-step sulfuric acid saccharification of the red alga Pterocladiella capillacea was optimized, and various detoxification methods (neutralization, overliming, and electrodialysis) of the acid hydrolysate were evaluated for fermentation with the thermotolerant yeast Kluyveromyces marxianus. A proximate composition analysis indicated that P. capillacea was rich in carbohydrates. A significant galactose recovery of $81.1{\pm}5%$ was also achieved under the conditions of a 12% (w/v) biomass load, 5% (v/v) sulfuric acid, $121^{\circ}C$, and hydrolysis for 30 min. Among the various detoxification methods, electrodialysis was identified as the most suitable for fermentable sugar recovery and organic acid removal (100% reduction of formic and levulinic acids), even though it failed to reduce the amount of the inhibitor 5-HMF. As a result, K. marxianus fermentation with the electrodialyzed acid hydrolysate of P. capillacea resulted in the best ethanol levels and fermentation efficiency.

Keywords

References

  1. Almeida JRM, Modig T, Petersson A, Hahn-Hagerdal B, Liden G, Gorwa-Grauslund MF. 2007. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J. Chem. Technol. Biotechnol. 82: 340-349. https://doi.org/10.1002/jctb.1676
  2. AOAC. 1998. Offical Methods of Analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Washington, DC.
  3. Bellido C, Bolado S, Coca M, Lucas S, Gonzalez-Benito G, Garcia-Cubero MT. 2011. Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102: 10868-10874. https://doi.org/10.1016/j.biortech.2011.08.128
  4. Chandel AK, Kapoor RK, Singh A, Kuhad RC. 2007. Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour. Technol. 98: 1947-1950. https://doi.org/10.1016/j.biortech.2006.07.047
  5. De Jong W, Marcotullio G. 2010. Overview of biorefineries based on co-production of furfural, existing concepts and novel developments. Int. J. Chem. React. Eng. 8.
  6. Gonzalez-Siso MI, Freire-Picos MA, Ramil E, Gonzalez- Dominguez M, Torres AR, Cerdan ME. 2000. Respirofermentative metabolism in Kluyveromyces lactis: insights and perspectives. Enzyme Microb. Technol. 26: 699-705. https://doi.org/10.1016/S0141-0229(00)00161-7
  7. Huang CH, Xu TW, Zhang YP, Xue YH, Chen GW. 2007. Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments. J. Membr. Sci. 288: 1-12. https://doi.org/10.1016/j.memsci.2006.11.026
  8. Jang JS, Cho Y, Jeong GT, Kim SK. 2012. Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica. Bioprocess Biosyst. Eng. 35: 11-18. https://doi.org/10.1007/s00449-011-0611-2
  9. Jang SS, Shirai Y, Uchida M, Wakisaka M. 2012. Production of mono sugar from acid hydrolysis of seaweed. Afr. J. Biotechnol. 11: 1953-1963.
  10. Jeong TS, Kim YS, Oh KK. 2011. Two-stage acid saccharification of fractionated Gelidium amansii minimizing the sugar decomposition. Bioresour. Technol. 102: 10529-10534. https://doi.org/10.1016/j.biortech.2011.09.017
  11. John RP, Anisha GS, Nampoothiri KM, Pandey A. 2011. Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour. Technol. 102: 186-193. https://doi.org/10.1016/j.biortech.2010.06.139
  12. Jonsson LJ, Alriksson B, Nilvebrant NO. 2013. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6.
  13. Larsson S, Palmqvist E, Hahn-Hagerdal B, Tengborg C, Stenberg K, Zacchi G, Nilvebrant NO. 1999. The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24: 151-159. https://doi.org/10.1016/S0141-0229(98)00101-X
  14. Limtong S, Sringiew C, Yongmanitchai W. 2007. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus. Bioresour. Technol. 98: 3367-3374. https://doi.org/10.1016/j.biortech.2006.10.044
  15. Liu ZL, Slininger PJ, Dien BS, Berhow MA, Kurtzman CP, Gorsich SW. 2004. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. J. Ind. Microbiol. Biotechnol. 31: 345-352. https://doi.org/10.1007/s10295-004-0148-3
  16. Martin C, Jonsson LJ. 2003. Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Technol. 32: 386-395. https://doi.org/10.1016/S0141-0229(02)00310-1
  17. Meinita MDN, Hong YK, Jeong GT. 2012. Comparison of sulfuric and hydrochloric acids as catalysts in hydrolysis of Kappaphycus alvarezii (cottonii). Bioprocess Biosyst. Eng. 35: 123-128. https://doi.org/10.1007/s00449-011-0609-9
  18. Nahak S, Nahak G, Pradhan I, Sahu RK. 2011. Bioethanol from marine algae: a solution to global warming problem. J. Appl. Environ. Biol. Sci. 1: 74-80.
  19. Okuda N, Soneura M, Ninomiya K, Katakura Y, Shioya S. 2008. Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J. Biosci. Bioeng. 106: 128-133. https://doi.org/10.1263/jbb.106.128
  20. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ. 2012. Use of Gelidium amansii as a promising resource for bioethanol: a practical approach for continuous dilute-acid hydrolysis and fermentation. Bioresour. Technol. 108: 83-88. https://doi.org/10.1016/j.biortech.2011.12.065
  21. Quemener B, Lahaye M. 1998. Comparative analysis of sulfated galactans from red algae by reductive hydrolysis and mild methanolysis coupled to two different HPLC techniques. J. Appl. Phycol. 10: 75-81. https://doi.org/10.1023/A:1008022129661
  22. Rodrussamee N, Lertwattanasakul N, Hirata K, Suprayogi, Limtong S, Kosaka T, Yamada M. 2011. Growth and ethanol fermentation ability on hexose and pentose sugars and glucose effect under various conditions in thermotolerant yeast Kluyveromyces marxianus. Appl. Microbiol. Biotechnol. 90: 1573-1586. https://doi.org/10.1007/s00253-011-3218-2
  23. Silva RO, dos Santos GMP, Nicolau LAD, Lucetti LT, Santana APM, Chaves LDS, et al. 2011. Sulfated-polysaccharide fraction from red algae Gracilaria caudata protects mice gut against ethanol-induced damage. Mar. Drugs 9: 2188-2200. https://doi.org/10.3390/md9112188
  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. 2008. Determination of structural carbohydrates and lignin in biomass. Technical Report NREL/TP-510- 42618. National Renewable Energy Laboratory.
  25. Sun Y, Cheng JY. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83: 1-11. https://doi.org/10.1016/S0960-8524(01)00212-7
  26. Taherzadeh MJ, Gustafsson L, Niklasson C, Liden G. 2000. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 53: 701-708. https://doi.org/10.1007/s002530000328

Cited by

  1. Evaluation of Galactose Adapted Yeasts for Bioethanol Fermentation from Kappaphycus alvarezii Hydrolyzates vol.26, pp.7, 2014, https://doi.org/10.4014/jmb.1602.02019
  2. Bioethanol production from Gracilaria verrucosa using Saccharomyces cerevisiae adapted to NaCl or galactose vol.40, pp.4, 2014, https://doi.org/10.1007/s00449-016-1718-2
  3. The Use of a Gas Chromatography/Milli-whistle Technique for the On-line Monitoring of Ethanol Production Using Microtube Array Membrane Immobilized Yeast Cells vol.33, pp.5, 2014, https://doi.org/10.2116/analsci.33.625
  4. Bioethanol Production from Hydrodictyon reticulatum by Fed-Batch Fermentation Using Saccharomyces cerevisiae KCTC7017 vol.27, pp.6, 2014, https://doi.org/10.4014/jmb.1607.07066
  5. Detoxification of Hydrolysates of the Red Seaweed Gelidium amansii for Improved Bioethanol Production vol.188, pp.4, 2014, https://doi.org/10.1007/s12010-019-02970-x
  6. Green technology in green macroalgal biorefineries vol.58, pp.5, 2014, https://doi.org/10.1080/00318884.2019.1640516
  7. Production of Lactic Acid from Seaweed Hydrolysates via Lactic Acid Bacteria Fermentation vol.6, pp.1, 2014, https://doi.org/10.3390/fermentation6010037
  8. Microalgal biofuels in China: The past, progress and prospects vol.12, pp.12, 2020, https://doi.org/10.1111/gcbb.12741