DOI QR코드

DOI QR Code

Functional Characterization of aroA from Rhizobium leguminosarum with Significant Glyphosate Tolerance in Transgenic Arabidopsis

  • Han, Jing (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences) ;
  • Tian, Yong-Sheng (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences) ;
  • Xu, Jing (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences) ;
  • Wang, Li-Juan (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences) ;
  • Wang, Bo (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences) ;
  • Peng, Ri-He (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences) ;
  • Yao, Quan-Hong (Department of Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute of Shanghai Academy of Agricultural Sciences)
  • Received : 2013.12.30
  • Accepted : 2014.05.15
  • Published : 2014.09.28

Abstract

Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene ($aroA_{R.\;leguminosarum}$) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that $aroA_{R.\;leguminosarum}$ is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the $aroA_{R.\;leguminosarum}$ gene was obtained to prove its potential use in developing glyphosate-resistant crops.

Keywords

References

  1. Bentley R, Haslam E. 1990. The shikimate pathway - a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25: 307-384. https://doi.org/10.3109/10409239009090615
  2. Berti PJ, Chindemi P. 2009. Catalytic residues and an electrostatic sandwich that promote enolpyruvyl shikimate 3-phosphate synthase (AroA) catalysis. Biochemistry 48: 3699-3707. https://doi.org/10.1021/bi802251s
  3. Cao G, Liu Y, Zhang S, Yang X, Chen R, Zhang Y, et al. 2012. A novel 5-enolpyruvylshikimate-3-phosphate synthase shows high glyphosate tolerance in Escherichia coli and tobacco plants. PLoS One 7: 1-11.
  4. Chen L, Pradhan S, Evans Jr TC. 2001. Herbicide resistance from a divided EPSPS protein: the split Synechocystis DnaE intein as an in vivo affinity domain. Gene 263: 39-48. https://doi.org/10.1016/S0378-1119(00)00568-0
  5. Comai L, Facciotti D, Hiatt W, Thompson G, Rose R, Stalker D. 1985. Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741-744. https://doi.org/10.1038/317741a0
  6. Della Cioppa G, Bauer SC, Klein BK, Shah DM, Fraley RT, Kishore GM. 1986. Translocation of the precursor of 5- enolpyruvylshikimate-3-phosphate synthase into chloroplasts of higher plants in vitro. Proc. Natl. Acad. Sci. USA 83: 6873-6877. https://doi.org/10.1073/pnas.83.18.6873
  7. Funke T, Yang Y, Han H, Healy-Fried M, Olesen S, Becker A, Schonbrunn E. 2009. Structural basis of glyphosate resistance resulting from the double mutation Thr97$\rightarrow$Ile and Pro101$\rightarrow$Ser in 5-enolpyruvylshikimate-3-phosphate synthase from Escherichia coli. J. Biol. Chem. 284: 9854-9860. https://doi.org/10.1074/jbc.M809771200
  8. He M, Nie YF, Xu P. 2003. A T42M substitution in bacterial 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) generates enzymes with increased resistance to glyphosate. Biosci. Biotechnol. Biochem. 67: 1405-1409. https://doi.org/10.1271/bbb.67.1405
  9. Jin D, Lu W, Ping S, Zhang W, Chen J, Dun B, et al. 2007. Identification of a new gene encoding EPSPS with high glyphosate resistance from the metagenomic library. Curr. Microbiol. 55: 350-355. https://doi.org/10.1007/s00284-007-0268-x
  10. Laguerre G, Mavingui P, Allard MR, Charnay MP, Louvrier P, Mazurier SI, et al. 1996. Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars. Appl. Environ. Microbiol. 62: 2029-2036.
  11. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97. https://doi.org/10.1016/0003-2697(79)90115-5
  12. Liu CM, McLean PA, Sookdeo CC, Cannon FC. 1991. Degradation of the herbicide glyphosate by members of the family Rhizobiaceae. Appl. Environ. Microbiol. 57: 1799-1804.
  13. Long SR. 1989. Rhizobium-legume nodulation: life together in the underground. Cell 56: 203-214. https://doi.org/10.1016/0092-8674(89)90893-3
  14. Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A. 2010. Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol. Res. 165: 50-60. https://doi.org/10.1016/j.micres.2008.06.002
  15. Masson Boivin C, Giraud E, Perret X, Batut J. 2009. Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol. 17: 458-466. https://doi.org/10.1016/j.tim.2009.07.004
  16. Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant 15: 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  17. Murray EE, Lotzer J, Eberle M. 1989. Codon usage in plant genes. Nucleic Acids Res. 17: 477-498. https://doi.org/10.1093/nar/17.2.477
  18. Padgette S, Huynh Q, Aykent S, Sammons R, Sikorski J, Kishore G. 1988. Identification of the reactive cysteines of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase and their nonessentiality for enzymatic catalysis. J. Biol. Chem. 263: 1798-1802.
  19. Park H, Hilsenbeck JL, Kim HJ, Shuttleworth WA, Park YH, Evans JN, Kang C. 2004. Structural studies of Streptococcus pneumoniae EPSP synthase in unliganded state, tetrahedral intermediate bound state and S3PGLP-bound state. Mol. Microbiol. 51: 963-971. https://doi.org/10.1046/j.1365-2958.2003.03885.x
  20. Peng RH, Tian YS, Xiong AS, Zhao W, Fu XY, Han HJ, et al. 2012. A novel 5-enolpyruvylshikimate-3-phosphate synthase from Rahnella aquatilis with significantly reduced glyphosate sensitivity. PLoS One 7: e39579. https://doi.org/10.1371/journal.pone.0039579
  21. Peng RH, Xiong AS, Yao QH. 2006. A direct and efficient PAGE-mediated overlap extension PCR method for gene multiple-site mutagenesis. Appl. Microbiol. Biotechnol. 73: 234-240. https://doi.org/10.1007/s00253-006-0583-3
  22. Priestman MA, Healy ML, Funke T, Becker A, Schönbrunn E. 2005. Molecular basis for the glyphosate-insensitivity of the reaction of 5-enolpyruvylshikimate 3-phosphate synthase with shikimate. FEBS Lett. 579: 5773-5780. https://doi.org/10.1016/j.febslet.2005.09.066
  23. Schonbrunn E, Eschenburg S, Shuttleworth WA, Schloss JV, Amrhein N, Evans JN, Kabsch W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5- enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 98: 1376-1380. https://doi.org/10.1073/pnas.98.4.1376
  24. Shi XX, Shi SL, Yang J, Wang ZF. 2006. Research advancement in taxonomy of Rhizobium leguminosarum [J]. Grassland Turf. 1: 002.
  25. Sun YC, Chen YC, Tian ZX, Li FM, Wang XY, Zhang J, et al. 2005. Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China. Appl. Environ. Microbiol. 71: 4771-4776. https://doi.org/10.1128/AEM.71.8.4771-4776.2005
  26. Tian YS, Xiong AS, Xu J, Zhao W, Gao F, Fu XY, et al. 2010. Isolation from Ochrobactrum anthropi of a novel class II 5- enolpyruvylshikimate-3-phosphate synthase with high tolerance to glyphosate. Appl. Environ. Microbiol. 76: 6001-6005. https://doi.org/10.1128/AEM.00770-10
  27. Tian YS, Xu J, Peng RH, Xiong AS, Xu H, Zhao W, et al. 2013. Mutation by DNA shuffling of 5-enolpyruvylshikimate-3-phosphate synthase from Malus domestica for improved glyphosate resistance. Plant Biotechnol. J. 11: 829-838. https://doi.org/10.1111/pbi.12074
  28. Vaithanomsat P, Brown KA. 2007. Isolation and mutation of recombinant EPSP synthase from pathogenic bacteria Pseudomonas aeruginosa. Process Biochem. 42: 592-598. https://doi.org/10.1016/j.procbio.2006.11.006
  29. Wang HY, Li YF, Xie LX, Xu P. 2003. Expression of a bacterial aroA mutant, aroA-M1, encoding 5-enolpyruvylshikimate-3-phosphate synthase for the production of glyphosateresistant tobacco plants. J. Plant Res. 116: 455-460. https://doi.org/10.1007/s10265-003-0120-8
  30. Wang W, Xia H, Yang X, Xu T, Si HJ, Cai XX, et al. 2013. A novel 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase transgene for glyphosate resistance stimulates growth and fecundity in weedy rice (Oryza sativa) without herbicide. New Phytol. 202: 679-688.
  31. Xiong AS, Peng RH, Liu JG, Zhuang J, Qiao YS, Xu F, et al. 2007. High efficiency and throughput system in directed evolution in vitro of reporter gene. Appl. Microbiol. Biotechnol. 74: 160-168. https://doi.org/10.1007/s00253-006-0659-0
  32. Xiong AS, Yao QH, Peng RH, Duan H, Li X, Fan HQ, et al. 2006. PCR-based accurate synthesis of long DNA sequences. Nat. Protoc. 1: 791-797. https://doi.org/10.1038/nprot.2006.103
  33. Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Jin XF, et al. 2010. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance in Arabidopsis. Planta 231: 1251-1260. https://doi.org/10.1007/s00425-010-1122-0
  34. Young JPW, Crossman LC, Johnston AW, Thomson NR, Ghazoui ZF, Hull KH, et al. 2006. The genome of Rhizobium leguminosarum has recognizable core and accessory components. Genome Biol. 7: R34. https://doi.org/10.1186/gb-2006-7-4-r34
  35. Zhang X, Henriques R, Lin SS, Niu QW, Chua NH. 2006. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat. Protoc. 1: 641-646. https://doi.org/10.1038/nprot.2006.97

Cited by

  1. Improvement of Glyphosate Resistance through Concurrent Mutations in Three Amino Acids of the Pantoea sp. 5-Enolpyruvylshikimate-3-Phosphate Synthase vol.28, pp.8, 2014, https://doi.org/10.4014/jmb.1801.01026
  2. Cloning and Characterization of 5-enopy ruvylshikimate-3-phosphate Synthase from Fragaria vesca vol.64, pp.None, 2021, https://doi.org/10.1590/1678-4324-2021200316