DOI QR코드

DOI QR Code

퍼지 기법을 이용한 다수 레이저스캐너 기반 객체 인식 알고리즘

Object Classification Algorithm with Multi Laser Scanners by Using Fuzzy Method

  • 이기룡 (아주대학교 일반대학원 전자공학과) ;
  • 좌동경 (아주대학교 전자공학과)
  • 투고 : 2014.04.11
  • 심사 : 2014.10.06
  • 발행 : 2014.10.31

초록

본 논문에서는 레이저스캐너만으로 이루어진 감지 시스템을 이용하여 도로 위에 있는 객체의 위치를 추정하고 분류하는 알고리즘을 제안한다. 각각의 레이저 스캐너에서 획득한 데이터는 그리드 맵을 사용하여 데이터를 융합하였으며, 팽창 연산과 레이블링 방법을 사용하여 측정 오차를 보정하였다. 추출한 객체의 정보(길이, 폭)를 입력으로 사용한 퍼지방법을 통해 객체를 보행자, 자전거, 차량으로 분류하였으며, 이러한 방법은 레이저스캐너로만 이루어진 감지 시스템의 정확도를 증가시켰다. 또한 본 논문에서는 실제 도로 환경에서 몇 가지 시나리오를 설정하여 실험을 하였다. 실험을 통해 감지 시스템이 객체를 정확히 분류하는지, GPS-RTK 장비를 사용하여 획득한 위치 정보와 비교하여 객체의 위치 정보를 정확히 추정하는지 검증하였다.

This paper proposes the on-road object detection and classification algorithm by using a detection system consisting of only laser scanners. Each sensor data acquired by the laser scanner is fused with a grid map and the measurement error and spot spaces are corrected using a labeling method and dilation operation. Fuzzy method which uses the object information (length, width) as input parameters can classify the objects such as a pedestrian, bicycle and vehicle. In this way, the accuracy of the detection system is increased. Through experiments for some scenarios in the real road environment, the performance of the proposed detection and classification system for the actual objects is demonstrated through the comparison with the actual information acquired by GPS-RTK.

키워드

참고문헌

  1. Florian Ahlers and Christian Stimming, "Laserscanner based cooperative Pre-data-fusion," Advanced Microsystems for Automotive Application 2008, pp.63-71, 2008.
  2. Florian Ahlers and Christian Stimming, "Cooperative Laserscanner Pre-Data-Fusion, "IEEE Intelligent Vehicles Symposium 2008, pp.1187-1190, Eindhoven, Netherlands, Jun. 2008.
  3. Meng Lu, Kees Wevers and Rob Van Der Heijden, "Technical Feasibility of Advanced Driver Assistance Systems (ADAS) for Road Traffic Safety," Transportation Planning and Technology, vol. 28, no. 3, pp.167-187, Jun. 2005. https://doi.org/10.1080/03081060500120282
  4. Gwang Yul Song, Ki Yong Lee and Joon Woong Lee, "Vehicle Detection by Edge-based Candidate Generation and Appearance-based Classification," IEEE Intelligent Vehicles Symposium 2008, pp.428-433, Eindhovan, Netherlands, Jun. 2008.
  5. Goncalo Monteiro, Cristiano Premebida, Paulo Peixoto and Urbano Nunes, "Tracking and Classification of Dynamic Obstacles Using Laser Range Finder and Vision," in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Beijing, China, 2006.
  6. Wook-Sun Shin, Doo-Heon Song and Chang-Hun Lee, "Vehicle Classification by Road Lane Detection and Model Fitting Using a Surveillance Camera," International Journal of Information Processing Systems, vol. 2, no. 1, pp.52-57, Mar. 2006. https://doi.org/10.3745/JIPS.2006.2.1.052
  7. Habibu Rabiu, "Vehicle Detection and Classification for Cluttered Urban Intersection," International Journal of Computer Science, Engineering and Applications, vol. 3, no. 1, pp.37-47, Feb. 2013.
  8. Zhengping Ji and Danil Prokhorov, "Radar-Vision Fusion for Object Classification," IEEE Int. Conf. on Information Fusion 2008, pp.1-7, Cologne, Germany, Jun. 2008.
  9. S. Tokoro, K. Moriizumi, T. Kawasaki, T. Nagao, K. Abe and K. Fujita, "Sensor Fusion system Pre-crash safety system," IEEE Intelligent Vehicles Symposium, pp.14-17, Parma, Italy, Jun. 2004.
  10. 오주택, 이상용, 이상민, 김영삼, "Vision 시스템의 차량 인식률 향상에 관한 연구," 한국ITS 학회 논문지, vol. 10, no. 3, pp.16-24, Jun. 2011.
  11. Stefano Messelodi, Carla Maroa Modena and Michele Zanin, "A Computer Vision System for the Detection and Classification of Vehicles at Urban Road Intersections," Pattern Analysis and Applications, vol. 8, pp.17-31, Sep. 2005. https://doi.org/10.1007/s10044-004-0239-9
  12. Xia Liu and Kikuo Fujimura, "Pedestrian Detection Using Stereo Night Vision," IEEE Trans. on Vehicular Technology, vol. 53, no. 6, pp.1657-1665, Nov. 2004. https://doi.org/10.1109/TVT.2004.834876
  13. Giorgio Grisetti, Cyrill Stachniss and Wolfram Burgard, "Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters," IEEE Trans. on Robotics, vol. 23, no. 1, pp.34-46, Feb. 2007. https://doi.org/10.1109/TRO.2006.889486
  14. Trung-dung Vu, Olivier Aycard, "Online Localization and Mapping with Moving Object Tracking in Dynamic Outdoor Environments," IEEE Intelligent Vehicles Symposium 2007, pp.190-195, Istanbul, Turkey, Jun. 2007.
  15. Alberto Elfes, "Using Occupancy Grids for Mobile Robot Perception and Navigation," Computer, vol. 22, no. 6, pp.46-57, Jun. 1989.
  16. Sung-Wook Kim, Kwangsoo Kim, Joo- hyung Lee and Dong-il(Dan) Cho, "Application of Fuzzy Logic to Vehicle Classification Algorithm in Loop/Piezo-Sensor Fusion Systems," Asian Journal of Control, vol. 3, no. 1, pp.64-68, Mar. 2001.
  17. 박준형, 김태진, 오철, "고속도로 루프검지기를 이용한 차종분류 기법 평가," 한국ITS학회 논문지, vol. 8, no. 1, pp.9-21, Mar. 2009.
  18. Chang Choi, Junho Choi, Eunji Lee, Ilsun You and Pankoo Kim, "Probabilistic Spatio-temporal Inference for Motion Event Understanding," Neurocomputing, vol. 122, pp.24-32, Dec. 2013. https://doi.org/10.1016/j.neucom.2012.12.058
  19. Chang Choi, Junho Choi, Juhyun Shin, Sung-Ryul Kim and Pankoo Kim, "Semantic Representation of Motion for Tracing Object in Surveillance System," Journal of Internet Technology, vol. 14, no. 4, pp.621-630, Jul. 2012.