DOI QR코드

DOI QR Code

Carbon-allotropes: synthesis methods, applications and future perspectives

  • Karthik, P.S. (Inorganic and Physical Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology) ;
  • Himaja, A.L. (Inorganic and Physical Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology) ;
  • Singh, Surya Prakash (Inorganic and Physical Chemistry Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Technology)
  • Received : 2014.06.14
  • Accepted : 2014.08.23
  • Published : 2014.10.31

Abstract

The element carbon has been used as a source of energy for the past few hundred years, and now in this era of technology, carbon has played a significant and very prominent role in almost all fields of science and technology. So as an honour to this marvellous element, we humans should know about its various forms of existence. In this review article, we shed light on all possible carbon-allotropes; similarities in their synthesis techniques and the starting materials; their wide range of possible availability; and finally, future perspectives and applications. A brief introduction is given on the types, structures, and shapes of the allotropes of carbon for a better understanding.

Keywords

References

  1. Kenney D, Center BP. Deep Carbon Observatory releases "Carbon on Earth" [Internet], c2013. Available from: http://blog.mbl.edu/?p=2221.
  2. Chang R. Chemistry. 9th ed., McGrawHill Higher Education, Boston, MA, 52 (2007).
  3. Hirsch A. The era of carbon allotropes. Nat Mater, 9, 868 (2010). http://dx.doi.org/10.1038/nmat2885.
  4. Wikipedia. Allotropes of carbon [Internet]. Available from: http://en.wikipedia.org/wiki/Allotropes_of_carbon#mediaviewer/File:Eight_Allotropes_of_Carbon.png.
  5. Kroto HW, Heath JR, O'Brien SC, Curl RF, Smalley RE. $C_{60}$: Buckminsterfullerene. Nature, 318, 162 (1985). http://dx.doi.org/10.1038/318162a0.
  6. Iijima S. Helical microtubules of graphitic carbon. Nature, 354, 56 (1991). http://dx.doi.org/10.1038/354056a0.
  7. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Electric field effect in atomically thin carbon films. Science, 306, 666 (2004). http://dx.doi.org/10.1126/science.1102896.
  8. Li LS, Yan X. Colloidal graphene quantum dots. J Phys Chem Lett, 1, 2572 (2010). http://dx.doi.org/10.1021/jz100862f.
  9. Li LL, Ji J, Fei R, Wang CZ, Lu Q, Zhang JR, Jiang LP, Zhu JJ. A facile microwave avenue to electrochemiluminescent two-color graphene quantum dots. Adv Funct Mater, 22, 2971 (2012). http://dx.doi.org/10.1002/adfm.201200166.
  10. Frondel C, Marvin UB. Lonsdaleite, a hexagonal polymorph of diamond. Nature, 214, 587 (1967). http://dx.doi.org/10.1038/214587a0.
  11. Bundy FP, Kasper JS. Hexagonal diamond: a new form of carbon. J Chem Phys, 46, 3437 (1967). http://dx.doi.org/10.1063/1.1841236.
  12. Lonsdaleite [Internet]. Available from: http://www.answers.com/topic/lonsdaleite.
  13. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385 (2008). http://dx.doi.org/10.1126/science.1157996.
  14. Pal'yanov YN, Sokol AG, Borzdov YM, Khokhryakov AF, Sobolev NV. Diamond formation from mantle carbonate fluids. Nature, 400, 417 (1999). http://dx.doi.org/10.1038/22678.
  15. Kaiser W, Bond WL. Nitrogen, a major impurity in common type I diamond. Phys Rev, 115, 857 (1959). http://dx.doi.org/10.1103/PhysRev.115.857.
  16. Kratschmer W, Lamb LD, Fostiropoulos K, Huffman DR. Solid $C_{60}$: a new form of carbon. Nature, 347, 354 (1990). http://dx.doi.org/10.1038/347354a0.
  17. Ando T. The electronic properties of graphene and carbon nanotubes. NPG Asia Mater, 1, 17 (2009). http://dx.doi.org/10.1038/asiamat.2009.1.
  18. Johnson RR. About carbon/boron nitride nanostructure builder plugin [Internet]. Available from: http://www.ks.uiuc.edu/Research/vmd/plugins/nanotube/.
  19. Pfeiffer R, Pichler T, Kim Y, Kuzmany H. Double-wall carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus M, eds. Carbon Nanotubes, Vol. 111, Springer Berlin, Heidelberg, 495 (2008). http://dx.doi.org/10.1007/978-3-540-72865-8_16.
  20. Choudhary V, Gupta A. Polymer/carbon nanotube nanocomposites. In: Yellampalli S, ed. Carbon Nanotubes: Polymer Nanocomposites, Chapter 4, InTech (2011). http://dx.doi.org/10.5772/18423.
  21. Parker CB, Raut AS, Brown B, Stoner BR, Glass JT. Three-dimensional arrays of graphenated carbon nanotubes. J Mater Res, 27, 1046 (2012). http://dx.doi.org/10.1557/jmr.2012.43.
  22. Yu K, Lu G, Bo Z, Mao S, Chen J. Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J Phys Chem Lett, 2, 1556 (2011). http://dx.doi.org/10.1021/jz200641c.
  23. Zhao X, Liu Y, Inoue S, Suzuki T, Jones RO, Ando Y. Smallest carbon nanotube is 3 ${\AA}$ in diameter. Phys Rev Lett, 92, 125502 (2004). http://dx.doi.org/10.1103/PhysRevLett.92.125502.
  24. Ishii Y, Matsuura S, Segawa Y, Itami K. Synthesis and dimerization of chloro[10]cycloparaphenylene: a directly connected cycloparaphenylene dimer. Org Lett, 16, 2174 (2014). http://dx.doi.org/10.1021/ol500643c.
  25. C121258: [12]Cycloparaphenylene [Internet]. Available from: http://www.aladdin-e.com/itemDetail.do?cust_item=C121258-10mg&whs_id=1.
  26. Martel R, Shea HR, Avouris P. Rings of single-walled carbon nanotubes. Nature, 398, 299 (1999). http://dx.doi.org/10.1038/18589.
  27. Itoh S, Ihara S, Kitakami J. Toroidal form of carbon C360. Phys Rev B, 47, 1703 (1993). http://dx.doi.org/10.1103/PhysRevB.47.1703.
  28. Laguna Design. Nanotube Technology, Computer Artwork [Intertion net], c2013. Available from: http://fineartamerica.com/featured/3-nanotube-technology-computer-artwork-laguna-design.html.
  29. Krasheninnikov A. NanoBud.JPG [Internet], c2006. Available from: https://www.newworldencyclopedia.org/entry/File:NanoBud.JPG.
  30. Hornbaker DJ, Kahng SJ, Misra S, Smith BW, Johnson AT, Mele EJ, Luzzi DE, Yazdani A. Mapping the one-dimensional electronic states of nanotube peapod structures. Science, 295, 828 (2002). http://dx.doi.org/10.1126/science.1068133.
  31. Okada S, Saito S, Oshiyama A. Energetics and electronic structures of encapsulated C60 in a carbon nanotube. Phys Rev Lett, 86, 3835 (2001). http://dx.doi.org/10.1103/PhysRevLett.86.3835.
  32. Britz DA, Khlobystov AN, Wang J, O'Neil AS, Poliakoff M, Ardavan A, Briggs GA. Selective host-guest interaction of singlewalled carbon nanotubes with functionalised fullerenes. Chem Commun, 176 (2004). http://dx.doi.org/10.1039/b313585c.
  33. Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett, 80, 1267 (2002). http://dx.doi.org/10.1063/1.1450264.
  34. Liu Q, Ren W, Chen ZG, Yin L, Li F, Cong H, Cheng HM. Semiconducting properties of cup-stacked carbon nanotubes. Carbon, 47, 731 (2009). http://dx.doi.org/10.1016/j.carbon.2008.11.005.
  35. Monthioux M, Noe L, Dussault L, Dupin JC, Latorre N, Ubieto T, Romeo E, Royo C, Monzon A, Guimon C. Texturising and structurising mechanisms of carbon nanofilaments during growth. J Mater Chem, 17, 4611 (2007). http://dx.doi.org/10.1039/B707742D.
  36. Mitchell DR, Brown RM Jr., Spires TL, Romanovicz DK, Lagow RJ. The synthesis of megatubes: new dimensions in carbon materials. Inorg Chem, 40, 2751 (2001). http://dx.doi.org/10.1021/ic000551q.
  37. Lagow R, Mitchell D, RM Brown Lab. Carbon Megatubes [Internet], c2000. Available from: http://www.botany.utexas.edu/facstaff/facpages/mbrown/tubes/.
  38. McDonough JK, Gogotsi Y. Carbon onions: synthesis and electrochemical applications. Interface, 22, 61 (2013).
  39. Kuznetsov VL, Chuvilin AL, Butenko YV, Mal'kov IY, Titov VM. Onion-like carbon from ultra-disperse diamond. Chem Phys Lett, 222, 343 (1994). http://dx.doi.org/10.1016/0009-2614(94)87072-1.
  40. Kuznetsov VL, Chuvilin AL, Moroz EM, Kolomiichuk VN, Shaikhutdinov SK, Butenko YV, Mal'kov IY. Effect of explosion conditions on the structure of detonation soots: ultradisperse diamond and onion carbon. Carbon, 32, 873 (1994). http://dx.doi.org/10.1016/0008-6223(94)90044-2.
  41. Delgado JL, Herranz MaA, Martin N. The nano-forms of carbon. J Mater Chem, 18, 1417 (2008). http://dx.doi.org/10.1039/B717218D.
  42. National Aeronautics and Space Administration (NASA). Building a buckyball particle in space [Internet], c2012. Available from: http://www.nasa.gov/mission_pages/spitzer/multimedia/pia15266.html.
  43. Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 126, 12736 (2004). http://dx.doi.org/10.1021/ja040082h.
  44. Liu HJ, Cui WJ, Jin LH, Wang CX, Xia YY. Preparation of three-dimensional ordered mesoporous carbon sphere arrays by a two-step templating route and their application for supercapacitors. J Mater Chem, 19, 3661 (2009). http://dx.doi.org/10.1039/B819820A.
  45. University of Wisconsin-Madison. Bucky_nanofiber_detail05.jpg [Internet], c2005. Available from: http://www.news.wisc.edu/newsphotos/images/Bucky_nanofiber_detail05.jpg.
  46. Nano-C. Fullerene Technology [Internet]. Available from: http://www.nano-c.com/fullerenetech.html.
  47. Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S. Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett, 9, 3137 (2009). http://dx.doi.org/10.1021/nl901260b.
  48. Liu BC, Lyu SC, Lee TJ, Choi SK, Eum SJ, Yang CW, Park CY, Lee CJ. Synthesis of single- and double-walled carbon nanotubes by catalytic decomposition of methane. Chem Phys Lett, 373, 475 (2003). http://dx.doi.org/10.1016/S0009-2614(03)00636-5.
  49. Dubey P, Muthukumaran D, Dash S, Mukhopadhyay R, Sarkar S. Synthesis and characterization of water-soluble carbon nanotubes from mustard soot. Pramana, 65, 681 (2005). http://dx.doi.org/10.1007/BF03010456.
  50. Wang Z, Zhao Z, Qiu J. Synthesis of branched carbon nanotubes from coal. Carbon, 44, 1321 (2006). http://dx.doi.org/10.1016/j.carbon.2005.12.030.
  51. Qiu J, Li Y, Wang Y, Li W. Production of carbon nanotubes from coal. Fuel Process Technol, 85, 1663 (2004). http://dx.doi.org/10.1016/j.fuproc.2003.12.010.
  52. Bang JJ, Trillo EA, Murr LE. Utilization of selected area electron diffraction patterns for characterization of air submicron particulate matter collected by a thermophoretic precipitator. J Air Waste Manage Assoc, 53, 227 (2003). http://dx.doi.org/10.1080/10473289.2003.10466133.
  53. Murr LE, Guerrero PA. Carbon nanotubes in wood soot. Atmos Sci Lett, 7, 93 (2006). http://dx.doi.org/10.1002/asl.138.
  54. de Heer WA, Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature. Chem Phys Lett, 207, 480 (1993). http://dx.doi.org/10.1016/0009-2614(93)89033-E.
  55. He C, Zhao N, Du X, Shi C, Ding J, Li J, Li Y. Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum. Scripta Mater, 54, 689 (2006). http://dx.doi.org/10.1016/j.scriptamat.2005.09.058.
  56. Miao JY, Hwang DW, Narasimhulu KV, Lin PI, Chen YT, Lin SH, Hwang LP. Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon, 42, 813 (2004). http://dx.doi.org/10.1016/j.carbon.2004.01.053.
  57. Mohan AN, Manoj B. Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int J Electrochem Sci, 7, 9537 (2012).
  58. Liu H, Ye T, Mao C. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed, 46, 6473 (2007). http://dx.doi.org/10.1002/anie.200701271.
  59. De B, Karak N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv, 3, 8286 (2013). http://dx.doi.org/10.1039/C3RA00088E.
  60. Baker SN, Baker GA. Luminescent carbon nanodots: emergent nanolights. Angew Chem Int Ed, 49, 6726 (2010). http://dx.doi.org/10.1002/anie.200906623.
  61. Zheng GB, Kouda K, Sano H, Uchiyama Y, Shi YF, Quan HJ. A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 42, 635 (2004). http://dx.doi.org/10.1016/j.carbon.2003.12.077.
  62. Zhou Z, Lai C, Zhang L, Qian Y, Hou H, Reneker DH, Fong H. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 50, 2999 (2009). http://dx.doi.org/10.1016/j.polymer.2009.04.058.
  63. Kamat P. Carbon nanomaterials: building blocks in energy conversion devices. Interface, 15, 45 (2006).
  64. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 146, 351 (2008). http://dx.doi.org/10.1016/j.ssc.2008.02.024.
  65. Lin YM, Dimitrakopoulos C, Farmer DB, Han SJ, Wu Y, Zhu W, Gaskill DK, Tedesco JL, Myers-Ward RL, Eddy CR, Jr., Grill A, Avouris P. Multicarrier transport in epitaxial multilayer graphene. Appl Phys Lett, 97, 112107 (2010). http://dx.doi.org/10.1063/1.3485671.
  66. Choi H, Kim H, Hwang S, Choi W, Jeon M. Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode. Sol Energy Mater Sol Cells, 95, 323 (2011). http://dx.doi.org/10.1016/j.solmat.2010.04.044.
  67. Thompson BC, Frechet JMJ. Polymer: fullerene composite solar cells. Angew Chem Int Ed, 47, 58 (2008). http://dx.doi.org/10.1002/anie.200702506.
  68. Friedman SH, DeCamp DL, Sijbesma RP, Srdanov G, Wudl F, Kenyon GL. Inhibition of the HIV-1 protease by fullerene derivatives: model building studies and experimental verification. J Am Chem Soc, 115, 6506 (1993). http://dx.doi.org/10.1021/ja00068a005.
  69. Holczer K, Klein O, Huang SM, Kaner RB, Fu K, Whetten RL, Diederich F. Alkali-fulleride superconductors: synthesis, composition, and diamagnetic shielding. Science, 252, 1154 (1991). http://dx.doi.org/10.1126/science.252.5009.1154.
  70. Allemand PM, Khemani KC, Koch A, Wudl F, Holczer K, Donovan S, Gruner G, Thompson JD. Organic molecular soft ferromagnetism in a fullerene$C_{60}$. Science, 253, 301 (1991). http://dx.doi.org/10.1126/science.253.5017.301.
  71. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol, 9, 674 (2005). http://dx.doi.org/10.1016/j.cbpa.2005.10.005.
  72. Bianco A, Prato M. Can carbon nanotubes be considered useful tools for biological applications? Adv Mater, 15, 1765 (2003). http://dx.doi.org/10.1002/adma.200301646.
  73. Atashbar MZ, Bejcek B, Singamaneni S, Santucci S. Carbon nanotube based biosensors. Proceedings of IEEE Sensors, Vienna, Austria, 1048 (2004). http://dx.doi.org/10.1109/ICSENS.2004.1426354.
  74. Sotiropoulou S, Chaniotakis NA. Carbon nanotube array-based biosensor. Anal Bioanal Chem, 375, 103 (2003). http://dx.doi.org/10.1007/s00216-002-1617-z.
  75. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P. Singleand multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 73, 2447 (1998). http://dx.doi.org/doi:http://dx.doi.org/10.1063/1.122477.
  76. Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc, 127, 6021 (2005). http://dx.doi.org/10.1021/ja050062v.
  77. Zanello LP, Zhao B, Hu H, Haddon RC. Bone cell proliferation on carbon nanotubes. Nano Lett, 6, 562 (2006). http://dx.doi.org/10.1021/nl051861e.
  78. Star A, Steuerman DW, Heath JR, Stoddart JF. Starched carbon nanotubes. Angew Chem Int Ed, 41, 2508 (2002). http://dx.doi.org/10.1002/1521-3773(20020715)41:14<2508::AID-ANIE2508>3.0.CO;2-A.
  79. Kim OK, Je J, Baldwin JW, Kooi S, Pehrsson PE, Buckley LJ. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose. J Am Chem Soc, 125, 4426 (2003). http://dx.doi.org/10.1021/ja029233b.
  80. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R. Stabilization of individual carbon nanotubes in aqueous solutions. Nano Lett, 2, 25 (2001). http://dx.doi.org/10.1021/nl010065f.
  81. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science, 286, 1127 (1999). http://dx.doi.org/10.1126/science.286.5442.1127.
  82. Lee SM, Lee YH. Hydrogen storage in single-walled carbon nanotubes. Appl Phys Lett, 76, 2877 (2000). http://dx.doi.org/10.1063/1.126503.
  83. Mu Y, Liang H, Hu J, Jiang L, Wan L. Controllable Pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells. J Phys Chem B, 109, 22212 (2005). http://dx.doi.org/10.1021/jp0555448.
  84. Hsin YL, Hwang KC, Yeh CT. Poly(vinylpyrrolidone)-modified graphite carbon nanofibers as promising supports for PtRu catalysts in direct methanol fuel cells. J Am Chem Soc, 129, 9999 (2007). http://dx.doi.org/10.1021/ja072367a.
  85. Esawi AMK, Farag MM. Carbon nanotube reinforced composites: potential and current challenges. Mater Design, 28, 2394 (2007). http://dx.doi.org/10.1016/j.matdes.2006.09.022.
  86. Ding L, Stilwell J, Zhang T, Elboudwarej O, Jiang H, Selegue JP, Cooke PA, Gray JW, Chen FF. Molecular characterization of the cytotoxic mechanism of multiwall carbon nanotubes and nanoonions on human skin fibroblast. Nano Lett, 5, 2448 (2005). http://dx.doi.org/10.1021/nl051748o.
  87. Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, LeCroy GE, Cao L, Sun YP. Carbon "quantum" dots for optical bioimaging. J Mater Chem B, 1, 2116 (2013). http://dx.doi.org/10.1039/C3TB00018D.
  88. Salinas-Castillo A, Ariza-Avidad M, Pritz C, Camprubi-Robles M, Fernandez B, Ruedas-Rama MJ, Megia-Fernandez A, Lapresta- Fernandez A, Santoyo-Gonzalez F, Schrott-Fischer A, Capitan-Vallvey LF. Carbon dots for copper detection with down and upconversion fluorescent properties as excitation sources. Chem Commun, 49, 1103 (2013). http://dx.doi.org/10.1039/C2CC36450F.
  89. Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, Asiri AM, Al-Youbi AO, Sun X. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem, 84, 5351 (2012). http://dx.doi.org/10.1021/ac3007939.
  90. Wang F, Chen YH, Liu CY, Ma DG. White light-emitting devices based on carbon dots' electroluminescence. Chem Commun, 47, 3502 (2011). http://dx.doi.org/10.1039/C0CC05391K.
  91. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater, 20, 1160 (2008). http://dx.doi.org/10.1002/adma.200701364.
  92. Yang R, Li H, Qiu X, Chen L. A spontaneous combustion reaction for synthesizing Pt hollow capsules using colloidal carbon spheres as templates. Chemistry, 12, 4083 (2006). http://dx.doi.org/10.1002/chem.200501474.
  93. Caihong W, Chu X, Wu M. Highly sensitive gas sensors based on hollow $SnO_2$ spheres prepared by carbon sphere template method. Sens Actuators B, 120, 508 (2007). http://dx.doi.org/10.1016/j.snb.2006.03.004.
  94. Chaturbedy P, Chatterjee S, Selvi RB, Bhat A, Kavitha MK, Tiwari V, Patel AB, Kundu TK, Maji TK, Eswaramoothy M. Multifunctional carbon nanospheres with magnetic and luminescent probes:probable brain theranostic agents. J Mater Chem B, 1, 939 (2013). http://dx.doi.org/10.1039/C2TB00134A.
  95. Pike CM, Grabner CP, Harkins AB. Fabrication of amperometric electrodes. J Vis Exp, 27, 1040 (2009). http://dx.doi.org/10.3791/1040.
  96. BMW i8 in detail. Carbon fiber explained [Internet]. Available from: http://bmwi.bimmerpost.com/forums/showthread.php?t=931027.

Cited by

  1. Electrocatalytic Interface Based on Novel Carbon Nanomaterials for Advanced Electrochemical Sensors vol.7, pp.18, 2015, https://doi.org/10.1002/cctc.201500198
  2. -hybridized carbon nanomaterials: structural transformation and topological defects of fullerene, carbon nanotube, and graphene vol.7, pp.2, 2017, https://doi.org/10.1002/wcms.1283
  3. Carbon nanotube: A review on its mechanical properties and application in aerospace industry vol.270, pp.1757-899X, 2017, https://doi.org/10.1088/1757-899X/270/1/012027
  4. Counter electrodes in dye-sensitized solar cells vol.46, pp.19, 2017, https://doi.org/10.1039/C6CS00752J