DOI QR코드

DOI QR Code

Soft Sensor Development for Predicting the Relative Humidity of a Membrane Humidifier for PEM Fuel Cells

고분자 전해질 연료전지용 막가습기의 상대습도 추정을 위한 소프트센서 개발

  • Received : 2014.09.23
  • Accepted : 2014.10.31
  • Published : 2014.10.30

Abstract

It is important to accurately measure and control the relative humidity of humidified gas entering a PEM (polymer electrolyte membrane) fuel cell stack because the level of humidification strongly affects the performance and durability of the stack. Humidity measurement devices can be used to directly measure the relative humidity, but they cost much to be equipped and occupy spaces in a fuel cell system. We present soft sensors for predicting the relative humidity without actual humidity measuring devices. By combining FIR (finite impulse response) model with PLS (partial least square) and SVM (support vector machine) regression models, DPLS (dynamic PLS) and DSVM (dynamic SVM) soft sensors were developed to correctly estimate the relative humidity of humidified gases exiting a planar-type membrane humidifier. The DSVM soft sensor showed a better prediction performance than the DPLS one because it is able to capture nonlinear correlations between the relative humidity and the input data of the soft sensors. Without actual humidity sensors, the soft sensors presented in this work can be used to monitor and control the humidity in operation of PEM fuel cell systems.

Keywords

References

  1. I.-S. Han, J. Jeong, B.-K. Kho, C. H. Choi, S. Yu, and H. K. Shin, "Development of a 25 kW-class PEM fuel cell system for the propulsion of a leisure boat", Trans. Korean Hydrogen & New Energy Society, Vol. 25, 2014, pp. 271-279. https://doi.org/10.7316/KHNES.2014.25.3.271
  2. A. Veziroglu and R. Macario, "Fuel cell vehicles: state of the art with economic and environmental concerns", Int. J. Hydrogen Energy, Vol. 36, 2011, pp. 25-43. https://doi.org/10.1016/j.ijhydene.2010.08.145
  3. S.-K. Park, S.-Y. Choe, and S.-H. Choi, "Dynamic modeling and analysis of a shell-and-tube type gas-to-gas membrane humidifier for PEM fuel cell applications", Int. J. Hydrogen Energy, Vol. 33, 2008, pp. 2273-2282. https://doi.org/10.1016/j.ijhydene.2008.02.058
  4. A. Samimi, S. A. Mousavi, A. Moallemzadeh, R. Roostaazad, M. Hesampour, A. Pihlajamaki, and M. Manttari, "Preparation and characterization of PES and PSU membrane humidifiers", J. Membrane Sci., Vol. 383, 2011, pp. 197-205. https://doi.org/10.1016/j.memsci.2011.08.043
  5. S. Park and D. Jung, "Effect of operating parameters on dynamic response of water-to-gas membrane humidifier for proton exchange membrane fuel cell vehicle", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 7114-7125. https://doi.org/10.1016/j.ijhydene.2013.03.170
  6. P. Kadlec, B. Gabrys, and S. Strandt, "Data-driven soft sensors in the process industry", Computers Chem. Eng., Vol. 33, 2009, pp. 795-814. https://doi.org/10.1016/j.compchemeng.2008.12.012
  7. M. Kim, Y.-H. Lee, I.-S. Han, and C. Han, "Clustering-based hybrid soft sensor for an industrial polypropylene process with grad change over operation", Ind. Eng. Chem. Res., Vol. 44, 2005, pp. 334-342. https://doi.org/10.1021/ie049803b
  8. D. Chen, W. Li, and H. Peng, "An experimental study and model validation of a membrane humidifier for PEM fuel cell humidification control", J. Power Sources, Vol. 180, 2008, pp. 461-467. https://doi.org/10.1016/j.jpowsour.2008.02.055
  9. P. Geladi and B. Kowalski, "Partial least-squares regression: a tutorial", Analytica Chimica Acta, Vol. 185, 1986, pp. 1-17. https://doi.org/10.1016/0003-2670(86)80028-9
  10. S. Wold, M. Sjostrom, and L. Eriksson, "PLSregression: a basic tool of chemometrics", Chemometrics and Intelligent Laboratory Systems, Vol. 58, 2001, pp. 109-130. https://doi.org/10.1016/S0169-7439(01)00155-1
  11. S. R. Gunn, "Support vector machines for classification and regression", University of Southampton, Southampton, UK. 1998.
  12. I.-S. Han, C. Han, and C.-B. Chung, "Melt index modeling with support vector machines, partial least squares, and artificial neural networks", J. Applied Polymer Science, Vol. 95, 2004, pp. 967-974.
  13. I.-S. Han, M. Kim, C.-H. Lee, W. Cha, B.-K. Ham, J.-H. Jeong, H. Lee, C.-B. Chung, and C. Han, "Application of partial least squares methods to a terephthalic acid manufacturing process for product quality control", Korean J. Chem. Eng., Vol. 20, 2003, pp. 977-984. https://doi.org/10.1007/BF02706925
  14. I.-S. Han and C. Han, "Modeling of multistage air-compression systems in chemical processes", Ind. Eng, Chem. Res., Vol. 42, 2003, pp. 2209-2218. https://doi.org/10.1021/ie020270l
  15. B. E. Bosen, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin classifiers", Proceedings of th 5th Annual ACM Worshop on Computational Learning Theory, Pittsburgh, PA, 1992.
  16. S. A. Kalogirou, "Artificial neural networks in renewable energy systems applications: a review", Renewable and Sustainable Energy Review, Vol. 5, 2001, pp 373-401. https://doi.org/10.1016/S1364-0321(01)00006-5
  17. C.-C. Chung, S.-F. Su, J.-T. Jeng, and C.-C. Hsiao, "Robust support vector regression networks for function approximation with outliers", IEEE Trans. Neural Networks, Vol. 13, 2002, pp 1322-1330. https://doi.org/10.1109/TNN.2002.804227
  18. I.-S. Han, Y.-H. Lee, and C. Han, "Modeling and optimization of the condensing steam turbine network of chemical plant", Ind. Eng. Chem. Res., Vol. 45, 2006, pp. 670-680. https://doi.org/10.1021/ie049425a
  19. Z. Zhong, X. Zhu, and G. Cao, "Modeling a PEMFC by a support vector machine", J. Power Sources, Vol. 160, 2006, pp. 293-298. https://doi.org/10.1016/j.jpowsour.2006.01.040
  20. L. Ljung, "System identification: theory for the user", Prentice Hall, New Jersey, USA, 1998.