DOI QR코드

DOI QR Code

The Relationship between the Time of Breeding Migration of the Gori Salamander (Hynobius yangi) and Climate Factors

고리도롱뇽의 번식이주 시기와 기후요소와의 관계

  • Kim, Ja-Kyoung (Department of Biology, Kangwon National University) ;
  • Park, Daesik (Division of Science Education, Kangwon National University) ;
  • Lee, Heon-Ju (Department of Biology, Kangwon National University) ;
  • Jeong, Soo-Min (Department of Biology, Kangwon National University) ;
  • Kim, Il-Hun (Department of Biology, Kangwon National University)
  • Received : 2014.08.11
  • Accepted : 2014.09.06
  • Published : 2014.09.30

Abstract

To elucidate which climate factors and what periods affect the time of breeding migration of Gori salamanders (Hynobius yangi), we have investigated relationships between the 5-years breeding monitoring data from 2006 to 2010 which had obtained in both natural and translocated breeding sites at Bongdae mountain, Gijang-gun, Busan-si and the matched climate data obtained from the weather station, approximately 25 km apart from the sites. Mean average and mean lowest temperatures during one month before the first breeding migration were related with the time of first female migration in the translocated site. Mean temperature variation and mean precipitation during 60~120 days before the first breeding migration affected the time of 30% male appearance at the natural site and the time of 30% female appearance at both natural and translocated sites. Climate factors were more closely related with female appearance than male and at the translocated site than at the natural site. Our results show that changes in mean temperature variation and mean precipitation rather than mean average temperature might more significantly affect the breeding migration of salamanders, female breeding migration is more closely related with climate factors, and the salamanders translocated could be more affected by climate changes than those in natural populations.

번식 시작 전 어느 기간의 어떠한 기후요소가 고리도롱뇽의 번식이주 시기에 영향을 미치는 지를 파악하고자, 부산시 기장군 봉대산 일대에서 고리도롱뇽의 자연번식지와 인접한 대체번식지에서 2006년부터 2010년까지 5년의 번식기 동안 날짜에 따라 번식지에 출현한 개체들을 기록한 개체군 모니터링 자료와 조사지로부터 약 25 km 떨어진 기상대에서 획득한 기후정보 사이의 상관관계를 분석하였다. 연구결과, 번식 시작 전 약 1달 동안의 평균기온 및 평균최저기온은 대체번식지 내 암컷의 번식이주 시기에 영향을 미쳤으며, 번식 전 2~4달 동안의 겨울철 평균일교차와 평균강수량은 각각 자연번식지의 수컷과 자연번식지와 대체번식지의 암컷의 번식이주 시기에 영향을 미쳤다. 번식이주 시기와 기후 요소와의 관련성은 수컷보다 암컷에서, 자연번식지에서보다는 대체번식지에서 더 높았다. 이러한 연구결과는 년도에 걸친 단순한 평균온도의 상승보다는 겨울철을 포함하는 기간 동안의 평균강수량과 평균일교차의 변동이 유미양서류 번식이주 시기에 더 큰 영향을 미치는 것을 보여준다. 더불어 암컷의 번식이주 시기가 수컷에 비하여 기후요소에 보다 더 밀접하게 관련되며, 특별히 이주된 유미양서류의 개체군들에서 이주시기는 기후요소의 영향을 더 크게 받는다는 것을 보여준다.

Keywords

References

  1. Araujo, M.B., W. Thuiller and R.G. Pearson. 2006. Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography 33(10): 1712-1728. https://doi.org/10.1111/j.1365-2699.2006.01482.x
  2. Arnfield, H., R. Grant, C. Monk and T. Uller. 2012. Factors influencing the timing of spring migration in common toads (Bufo bufo). Journal of Zoology 288(2): 112-118. https://doi.org/10.1111/j.1469-7998.2012.00933.x
  3. Beebee, T.J.C. 1995. Amphibian breeding and climate. Nature 374: 219-220. https://doi.org/10.1038/374219a0
  4. Bodinof, C.M., J.T. Briggler, R.E. Junge, J. Berninger, M.D. Wanner, C.D. Schuette, J. Ettling and J.J. Millspaugh. 2012a. Habitat attributes associated with short-term settlement of Ozark hellbender (Cryptobranchus alleganiensis bishopi) salamanders following translocation to the wild. Freshwater Biology 57(1): 178-192. https://doi.org/10.1111/j.1365-2427.2011.02697.x
  5. Bodinof, C.M., J.T. Briggler, R.E. Junge, T. Mong, J., Beringer, M.D. Wanner, C.D. Schuette, J. Ettling and J.J. Millspaugh. 2012b. Survival and body condition of captive-reared juvenile Ozark hellbenders (Cryptobranchus alleganiensis bishopi) following translocation to the wild. Copeia 2012(1): 150-159. https://doi.org/10.1643/CH-11-024
  6. Brenner, F.J. 1969. The role of temperature and fat deposition in hibernation and reproduction in two species of frogs. Herpetologica 25(2): 105-113.
  7. Caldwell, J.P. 1987. Demography and life history of two species of chorus frog (Anura: Hylidae) in South Carolina. Copeia 1987(1): 114-127. https://doi.org/10.2307/1446044
  8. Carey, C. and M.A. Alexander. 2003. Climate change and amphibian declines: is there a link? Diversity and Distributions 9(2): 111-121. https://doi.org/10.1046/j.1472-4642.2003.00011.x
  9. Dodd, C.K. Jr and R.A. Seigel. 1991. Relocation, repatriation, and translocation of amphibians and reptiles: are they conservation strategies that work? Herpetologica 47(3): 336-350.
  10. Harte, J., A. Ostling, J.L. Green and A. Kinzig. 2004. Climate change and extinction risk. Nature 427: 145-148. https://doi.org/10.1038/nature02121
  11. Hartel, T. 2008. Weather conditions, breeding data and population fluctuation in Rana dalmatina from central Romania. Journal of Herpetology 18(1): 40-44.
  12. Hasumi, M. 1996. Seasonal fluctuations of female reproductive organs in the salamander Hynobius nigrescens. Herpetologica 52(4): 598-605.
  13. Hurlbert, S.H. 1969. The breeding migrations and interhabitat wandering of the vermilion-spotted newt Notophthalmus viridescens. Ecological Monograph 39(4): 465-488. https://doi.org/10.2307/1942356
  14. IPCC. 2007. Climate Change 2007: The Physical Science Basis. Cambridge. p. 996.
  15. Johnson, D.C., C.T. Burt, W.C. Perng and B.M. Hitzig. 1993. Effects of temperature on muscle pHi and phosphate metabolism in newts and lungless salamanders. American Journal of Physiology 265: R1162-R1167.
  16. Kim, J.B., M.S. Min and M. Matsui. 2003. A new species of lentic breeding Korean salamander of the genus Hynobius (Amphibia, Urodela). Zoological Science 20(9): 1163-1169. https://doi.org/10.2108/zsj.20.1163
  17. Kusano, T. and M. Inoue. 2008. Long-term trends toward earlier breeding of Japanese amphibians. Journal of Herpetology 42(4): 608-614. https://doi.org/10.1670/08-002R1.1
  18. Lee, J.H., T.H. Kim, H.J. Baek, M.S. Min, D. Park and J.K. Kim. 2010. Monitoring of the relocated population of Hynobius yangi over five years. Korean Journal of Herpetology 2: 35-44.
  19. McCain, C. and R.K. Colwell. 2011. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecology Letters 14(12): 1236-1245. https://doi.org/10.1111/j.1461-0248.2011.01695.x
  20. Miwa, T. 2007. Conditions controlling the onset of breeding migration of the Japanese mountain stream frog, Rana sakuraii. Naturwissenschaften 94(7): 551-560. https://doi.org/10.1007/s00114-007-0226-2
  21. Park, H.W. 2010. Mating Behavior of Hynobius yangi: A Quantitative Analysis Based on Different Male Size. MS thesis, Kangwon National University, Chuncheon, Korea.
  22. Parmesan, C. and G. Yohe. 2003. A globally coherent fingerprint of climate change impacts across natural system. Nature 421: 37-42. https://doi.org/10.1038/nature01286
  23. Preacher, K.J. 2001. Calculation for the chi-square test: An interactive calculation tool for chi-square tests of goodness of fit and independence [Computer software]. Available from http://quantpsy.org.
  24. Reading, C.J. 1998. The effect of winter temperatures on the timing of breeding activity in the common toad Bufo bufo. Oecologia 117(4): 469-475. https://doi.org/10.1007/s004420050682
  25. Semlitsch, R.D. 1985. Analysis of climatic factors influencing migrations of the salamander Ambystoma talpoideum. Copeia 1985(2): 477-489. https://doi.org/10.2307/1444862
  26. Sexton, O.J., C. Phillips and J.E. Bramble. 1990. The effects of temperature and precipitation on the breeding migration of the Spotted salamander (Ambystoma maculatum). Copeia 1990(3): 781-787. https://doi.org/10.2307/1446443
  27. Sung, H.C., J.H. Lee and D. Park. 2005. Entering and exiting routes of Hynobius leechii to a breeding site and staying time within the site. Korean Journal of Ecology 28(5): 237-243. https://doi.org/10.5141/JEFB.2005.28.5.237
  28. Todd, B.D. and C.T. Winne. 2006. Ontogenetic and interspecific variation in timing of movement and responses to climatic factors during migrations by pond-breeding amphibians. Canadian Journal of Zoology 84(5): 715-722. https://doi.org/10.1139/z06-054