DOI QR코드

DOI QR Code

Determination of Efficient Operating Condition of UV/H2O2 Process Using the OH Radical Scavenging Factor

수산화라디칼 소모인자를 이용한 자외선/과산화수소공정의 효율적인 운전 조건도출

  • Kim, Seonbaek (Department of Environmental Engineering, Yonsei University) ;
  • Kwon, Minhwan (Department of Environmental Engineering, Yonsei University) ;
  • Yoon, Yeojoon (Department of Environmental Engineering, Yonsei University) ;
  • Jung, Youmi (Department of Environmental Engineering, Yonsei University) ;
  • Hwang, Tae-Mun (Korea Institute of Construction Technology) ;
  • Kang, Joon-Wun (Department of Environmental Engineering, Yonsei University)
  • Received : 2014.03.17
  • Accepted : 2014.08.25
  • Published : 2014.08.31

Abstract

This study investigated a method to determine an efficient operating condition for the $UV/H_2O_2$ process. The OH radical scavenging factor is the most important factor to predict the removal efficiency of the target compound and determine the operating condition of the $UV/H_2O_2$ process. To rapidly and simply measure the scavenging factor, Rhodamine B (RhB) was selected as a probe compound. Its reliability was verified by comparing it with a typical probe compound (para-chlorobenzoic acid, pCBA); the difference between RhB and pCBA was only 1.1%. In a prediction test for the removal of Ibuprofen, the RhB method also shows a high reliability with an error rate of about 5% between the experimental result and the model prediction using the measured scavenging factor. In the monitoring result, the scavenging factor in the influent water of the $UV/H_2O_2$ pilot plant was changed up to 200% for about 8 months, suggesting that the required UV dose could be increased about 1.7 times to achieve 90% caffeine removal. These results show the importance of the scavenging factor measurement in the $UV/H_2O_2$ process, and the operating condition could simply be determined from the scavenging factor, absorbance, and information pertaining to the target compound.

본 논문은 먹는물 처리공정에 적합한 고도산화공정 중 하나인 자외선/과산화수소공정의 효율적인 운전을 위한 최적 운전 조건을 도출하는 방법을 연구하였다. 자외선/과산화수소 공정에서 대상물질의 제거효율을 예측하고 그에 따른 운전조건을 도출하기 위한 핵심 인자인 수산화라디칼 소모인자를 보다 쉽고 빠르게 측정하기 위해 새로운 지표물질인 로다민 비(Rhodamin B, RhB)를 선정하여 검증하였다. 그 결과, 기존 지표물질인 para-Chlorobenzoic acid (pCBA)와 비교해 약 1.1% 이하의 오차율로 높은 신뢰성을 가진 것을 확인하였다. 검증된 RhB를 이용하여 측정한 수산화라디칼 소모인자 및 모델링을 통해 대상물질(Ibuprofen)의 제거효율 예측 가능성을 평가한 결과, 실제 실험값과 평균 오차율 약 5% 내외로 거의 일치하였다. 약 8개월간의 자외선/과산화수소공정 파일럿 플랜트 유입수의 수산화라디칼 소모인자 모니터링 결과, 최대 두 배 정도의 차이로 크게 변화하였다. 이 차이는 미량오염물질 중 하나인 Caffeine의 목표 제거율을 만족하기 위한 자외선 에너지를 약 1.7배 증가시켜야 할 정도로 큰 값이다. 이상의 결과를 통해 자외선/과산화수소 공정을 안전하고 효율적으로 운전하기 위해서는 수산화라디칼 소모인자의 측정이 매우 중요하며, 측정된 소모인자, 자외선 흡광도($A_{254}$), 대상물질의 정보만 입력하면 자외선/과산화수소 공정을 쉽게 제어할 수 있음을 확인하였다.

Keywords

References

  1. Yoon, Y., Ryu, J., Oh, J., Choi, B. G. and Snyder, S. A., "Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea)," Sci. Total Environ., 408(3), 636-643(2010). https://doi.org/10.1016/j.scitotenv.2009.10.049
  2. Kim I. and Tanaka, H., "Photodegradation characteristics of PPCPs in water with UVtreatment," Environ. Int., 35(5), 793-802(2009). https://doi.org/10.1016/j.envint.2009.01.003
  3. Aieta, E. M., Reagon, K. M., Lang, J. S., McReynolds, L., Kang, J. W. and Glaze, W. H., "Advanced Oxidation Processes for Treating Groundwater Contaminated with TCE and PCE : Pilot Scale Evaluations," J. Am. Water Works Assoc., 80(5), 64-72(1988).
  4. Craik, S. A., Weldon, D., Finch, G. R., Bolton, J. R. and Belosevic, M., "Inactivation of Cryptosporidium parvum ocysts using medium - and low - pressure ultraviolet radiation," Water Res., 35(6), 1387-1398(2001). https://doi.org/10.1016/S0043-1354(00)00399-7
  5. Pereira, V. J., Weinberg, H. S., Linden, K. G. and Singer, P. C., "UV Degradation kinetics and modeling of pharmaceutical compounds in laboratory grade and surface water via direct and indirect photolysis at 254 nm," Environ. Sci. Technol., 41(5), 1682-1688(2007). https://doi.org/10.1021/es061491b
  6. Glaze, W. H., Kang, J. W. and Chapin, D. H., "The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation," Ozone: Sci. Eng., 9(4), 335-352(1987). https://doi.org/10.1080/01919518708552148
  7. Baxendale, J. H. and Wilson, J. A., "The photolysis of hydrogen peroxide at high light in tensities," Trans. Faraday Soc., 53, 344-356(1957). https://doi.org/10.1039/tf9575300344
  8. Kang, J. W. and Lee, K. H., "A kinetic model of the hydrogen peroxide UV process forthe treatment of hazardous waste chemicals," Environ. Eng. Sci., 14(3), 183-192(1997). https://doi.org/10.1089/ees.1997.14.183
  9. Rosenfeldet, E. J. and Linden, K. G., "Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis andadvanced oxidation processes," Environ. Sci. Technol., 38(20), 5476-5483(2004). https://doi.org/10.1021/es035413p
  10. Rosenfeldet, E. J. and Linden, K. G., "The ROH,UV concept to characterize and themodel UV/$H_2O_2$ process in natural waters," Environ. Sci. Technol., 41(7), 2548-2553(2007). https://doi.org/10.1021/es062353p
  11. Han, S. K., Nam, S. N. and Kang, J. W., "OH radical monitoring technologies for AOP Advanced oxidation process," Water Sci. Technol., 46(11-12), 7-12(2002).
  12. Kwon, M. H., Kim, S. B., Yoon, Y.J., Jung, Y. M., Hwang, T. M. and Kang, J. W., "Prediction of the removal efficiency of pharmaceuticals by a rapid spectrophotometric method using Rhodamine B in the UV/$H_2O_2$ process," Chem. Eng. J., 236(15), 438-447(2014). https://doi.org/10.1016/j.cej.2013.10.064
  13. Bolton, J. R. and Linden, K. G., "Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments," J. Environ. Eng., 129(3), 209-215(2003). https://doi.org/10.1061/(ASCE)0733-9372(2003)129:3(209)
  14. Glaze, W. H., Lay, Y. and Kang, J. W., "Advanced Oxidation Processes- A kinetic model for the oxidation of 1,2- Dibromo-3-chloropropanein water by the combination of hydrogen peroxide and UV radiation," Ind. Eng. Chem. Res., 34(7), 2314-2323(1995). https://doi.org/10.1021/ie00046a013
  15. Buxton, G. V., Greenstock, C. L., Helman, W. P. and Ross, A. B., "Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals in aqueous solution," J. Phys. Chem., 17(2), 513-886(1988).
  16. Shrpless, C. M. and Linden, K. G., "Experimental and model comparisons of low- and medium-pressure Hg lamps for the direct and $H_2O_2$ assisted UV photodegradation of N-nitrosodim ethylamine in simulated drinking water," Environ. Sci. Technol., 37(9), 1933-1940(2003). https://doi.org/10.1021/es025814p
  17. Pereira, V. J., Linden, K. G. and Weinberg, H. S., "Evaluation of UV irradiation for photolytic and oxidative degradation of pharmaceutical compounds in water," Water Res., 41(19), 4413-4423(2007). https://doi.org/10.1016/j.watres.2007.05.056
  18. Von Gunten, U., "Ozonation of drinking water: Part I. Oxidation kinetics and product formation," Water Res., 37(7), 1443-1467(2003). https://doi.org/10.1016/S0043-1354(02)00457-8
  19. Coddington, J. W., Hurst, J. K. and Lymar, S. V., "Hydroxyl radical formation during peroxynitrous acid decomposition," J. Am. Chem. Soc., 121(11), 2438-2443(1999). https://doi.org/10.1021/ja982887t
  20. Zehavi, D. and Rabani, J., "The oxidation of aqueous bromide ions by hydroxylradicals. A pulse radiolytic investigation," J. Phys. Chem., 76(3), 312-319(1972). https://doi.org/10.1021/j100647a006
  21. Maruthamuthu, P. and Neta, P., "Phosphate radicals. Spectra, acid-base equilibria, and reactions with inorganic compounds," J. Phys. Chem., 82(6), 710-713(1978). https://doi.org/10.1021/j100495a019
  22. Zele, M. G. N. S. R., Cooper, W. J., Kurucz, C. N. and Waite, T. D., "Modeling kinetics of benzene, phenol, and toluene removal in aqueous solution using the highenergy electron beam process," Environ. Appl. Ioniz. Radiat., pp, 395-415(1998).
  23. Vinchurkar, M. S., Rao, B. S. M., Mohan, H. and Mittal, J. P., "Kinetics, spectral and redox behaviour of OH adducts of methylxanthines: a radiation chemical study," J. C. S. Perkin 2, 3, 609-617(1999).
  24. Baeza, C. and Knappe, D. R. U., "Transformation kinetics of biochemically active compounds in low-pressure UV Photolysis and UV/$H_2O_2$ advanced oxidation processes," Water Res., 45(15), 4531-4543(2011). https://doi.org/10.1016/j.watres.2011.05.039
  25. Wert, E. C., Rosario-Ortiz, F. L. and Snyder, S. A., "Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater," Water Res., 43(4), 1005-1014(2009). https://doi.org/10.1016/j.watres.2008.11.050
  26. Wols, B. A. and Hofman-Caris, C. H. M., "Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water," Water Res., 46(9), 2815-2827(2012). https://doi.org/10.1016/j.watres.2012.03.036
  27. Canonica, S., Meunier, L. and Von Gunten, U., "Phototransformation of selected pharmaceuticals during UV treatment of drinking water," Water Res., 42(1-2), 121-128(2008). https://doi.org/10.1016/j.watres.2007.07.026