DOI QR코드

DOI QR Code

Synthesis of carbon nanosheets using RF thermal plasma

유도 열플라즈마를 이용한 카본나노시트 합성

  • Lee, Seung-Yong (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Ko, Sang-Min (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Koo, Sang-Man (Department of Chemical Engineering, Hanyang University) ;
  • Hwang, Kwang-Taek (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Han, Kyu-Sung (Icheon Branch, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Jin-Ho (Icheon Branch, Korea Institute of Ceramic Engineering and Technology)
  • 이승용 (한국세라믹기술원 이천분원) ;
  • 고상민 (한국세라믹기술원 이천분원) ;
  • 구상만 (한양대학교 화학공학과) ;
  • 황광택 (한국세라믹기술원 이천분원) ;
  • 한규성 (한국세라믹기술원 이천분원) ;
  • 김진호 (한국세라믹기술원 이천분원)
  • Received : 2014.09.15
  • Accepted : 2014.10.22
  • Published : 2014.10.31

Abstract

An ultrathin sheet-like carbon nanostructure provides an important model of a two-dimensional graphite structure with strong anisotropy in physical properties. As an easy and cheap route for mass production, RF thermal plasma synthesis of freestanding carbon nanosheet from $CH_4$ (Methane) and $C_3H_8$ (Propane) is presented. Using vapor synthesis process with RF inductively thermal plasma, carbon nanosheets were obtained without catalysts and substrates. The synthesized carbon nanosheets were characterized using transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. The carbon nanosheets synthesized using methane and propane generally showed 5~6 and 15~16 layers with a wrinkled morphology and size of approximately 100 nm.

2차원 흑연구조를 갖는 카본나노시트는 큰 비표면적과 우수한 전기적, 화학적 및 기계적 물성으로 인하여 미래소재로 각광받고 있다. 경제적이고 쉬운 카본나노시트의 양산공정개발을 위해 본 연구에서는 메테인($CH_4$)과 프로페인($C_3H_8$) 가스를 이용한 유도 열플라즈마 공정을 통해 기상 합성하여 카본나노시트 분말을 합성하였다. 유도 열플라즈마를 이용한 카본나노시트 합성은 촉매나 증착공정 없이 진행되었으며, 합성된 카본나노시트의 물성을 TEM, Raman, XRD, BET로 분석하였다. 메테인과 프로페인으로부터 합성된 카본 나노시트는 각각 5~6개의 그래핀 층과 15~16개의 그래핀 층으로 이루어진 분말로 합성되었으며 분말의 크기는 약 100 nm임을 확인할 수 있었다.

Keywords

References

  1. G. Eda, G. Fanchini and C. Manish, "Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material", Nat. Nanotechnol. 3 (2008) 270. https://doi.org/10.1038/nnano.2008.83
  2. Z. Wei, D. Wang, S. Kim and S.Y. Kim, "Nanoscale tunable reduction of graphene oxide for graphene electronics", Science 328 (2010) 1373. https://doi.org/10.1126/science.1188119
  3. H.G. Oh, H.G. Nam, D.H. Kim, M.H. Kim, K.H. Jhee and K.S. Song, "Neuroblastoma cells grown on fluorine or oxygen treated graphene sheets", Mater Lett. 131 (2014) 328. https://doi.org/10.1016/j.matlet.2014.06.013
  4. K.X. Sheng, Y.X. XU, C. LI and G.Q. Shi, "High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide", Carbon 26 (2011) 9.
  5. M.M. Hossain, O.K. Parkb and J.R. Hahn, "High yield and high concentration few-layer graphene sheets using solvent exfoliation of graphite with pre-thermal treatment in a sealed bath", Mater Lett. 123 (2014) 90. https://doi.org/10.1016/j.matlet.2014.03.024
  6. D.A. Dikin, S. Stankovich and E.J. Zimney, "Preparation and characterization of graphene oxide paper", Nature 448 (2007) 457. https://doi.org/10.1038/nature06016
  7. K.S. Kim, Y. Zhao, H. Jang and S.Y. Lee, "Large-scale pattern growth of graphene films for dtretchable transparent electrodes", Nature 457 (2009) 706. https://doi.org/10.1038/nature07719
  8. L.R. Tong and R.G. Reddy, "Synthesis of titanium carbide nano-powders by thermal plasma", Scr. Mater. 52 (2005) 1253. https://doi.org/10.1016/j.scriptamat.2005.02.033
  9. B. Aktekin, G. Cakmak and T. Ozturk, "Induction thermal plasma synthesis of $Mg_2Ni$ nanoparticles", Int. J. Hydrogen Energy 39 (2014) 9859. https://doi.org/10.1016/j.ijhydene.2014.02.066
  10. K.I. Kim, S.C. Choi and K.S. Han, "Synthesis of high purity aluminum nitride nanopowder by RF induction thermal plasma", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 1. https://doi.org/10.6111/JKCGCT.2014.24.1.001
  11. A.B. Bourlinos, T.A. Steriotis, R. Zboril, V. Georgakilas and A. Stubos, "Direct synthesis of carbon nano sheets by the solid-state pyrolysis of betaine", Mater Sci. 44 (2009) 1407. https://doi.org/10.1007/s10853-009-3263-8
  12. H.P. Klug and L.E. Alexander, "X-ray diffraction procedures for polycrystalline and morphous materials", 2nd ed. (Wiley, New York, 1974) p. 992.
  13. J. Hackley, D. Ali, J. DiPasquale and J. Demaree, "Graphitic carbon growth on Si (111) using solid source molecular beam epitaxy", Appl. Phys. Lett. 95 (2009) 3.
  14. C. Casiraghi, A. Hartschuh, H. Qian, S. Piscanec, C. Georgi, A. Fasoli, K.S. Novoselov, D.M. Basko and A.C. Ferrari, "Raman spectroscopy of graphene edges", Nano Lett. 9 (2009) 1441.
  15. M.M. Hossain, J.R. Hahn and B.C. Ku, "Synthesis of highly dispersed and conductive raphene sheets by exfoliation of preheated graphite in a sealed bath and its applications to polyimide nanocomposites", Bull. Korean Chem. Soc. 35 (2014) 2049. https://doi.org/10.5012/bkcs.2014.35.7.2049
  16. V. Singh and D. Joung, "Graphene based materials : past, present and future", Pro in Materials Sci. 56 (2011) 1178. https://doi.org/10.1016/j.pmatsci.2011.03.003
  17. N.G. Prikhodko, M. Auyelkhankyzy, B.T. Lesbayev and Z.A. Mansurov, "The effect of pressure on the synthe-sis of graphene layers in the flame", Materials Sci. and Chemical Eng. 2 (2014) 13. https://doi.org/10.4236/msce.2014.21003
  18. R.J. Sereshta and M. Jahanshahi, "Synthesize and characterization of graphene nanosheets with high surface area and nano-porous structure", Appl. Surface Sci. 276 (2013) 672. https://doi.org/10.1016/j.apsusc.2013.03.152
  19. J.L. White and P.M Sheaffer, "Pitch-based processing of carbon-carbon composites", Carbon 27 (1989) 697. https://doi.org/10.1016/0008-6223(89)90203-0
  20. J. Kadla, S. Kubo, R. Venditti, R. Gilbert, A. Compere and W. Griffith, "Lignin-based carbon fibers for composite fiber applications", Carbon 40 (2002) 2913. https://doi.org/10.1016/S0008-6223(02)00248-8
  21. V. Sridhar, J.H. Jeon and I.K. Oh, "Synthesis of graphene nano-sheets using eco-friendly chemicals and microwave radiation", Carbon 48 (2010) 2953. https://doi.org/10.1016/j.carbon.2010.04.034
  22. A.C. Ferrari, "Ranman spectroscopy of graphene and graphite: disorder, electron-phonon coupling, doping and nonadiabatic effects", Solid State Commun. 143 (2007) 47. https://doi.org/10.1016/j.ssc.2007.03.052
  23. A. Peigney, Ch. Laurent, E. Flahaut, R.R. Bacsa and A. Rousset, "Specific surface area of carbon nanotubes and bundles of carbon nanotubes", Carbon 39 (2001) 507. https://doi.org/10.1016/S0008-6223(00)00155-X