DOI QR코드

DOI QR Code

A 16-channel Neural Stimulator IC with DAC Sharing Scheme for Artificial Retinal Prostheses

  • Seok, Changho (Department of Electronics, Chungnam National University) ;
  • Kim, Hyunho (Department of Electronics, Chungnam National University) ;
  • Im, Seunghyun (Department of Electronics, Chungnam National University) ;
  • Song, Haryong (Department of Electronics, Chungnam National University) ;
  • Lim, Kyomook (Department of Electronics, Chungnam National University) ;
  • Goo, Yong-Sook (Department of Physiology, College of Medicine, Chungbuk National University) ;
  • Koo, Kyo-In (Department of Electrical Engineering, University of Ulsan) ;
  • Cho, Dong-Il (ASRI/ISRC, Department of Electrical and Computer Engineering, Seoul National University) ;
  • Ko, Hyoungho (Department of Electronics, Chungnam National University)
  • 투고 : 2014.06.10
  • 심사 : 2014.08.12
  • 발행 : 2014.10.30

초록

The neural stimulators have been employed to the visual prostheses system based on the functional electrical stimulation (FES). Due to the size limitation of the implantable device, the smaller area of the unit current driver pixel is highly desired for higher resolution current stimulation system. This paper presents a 16-channel compact current-mode neural stimulator IC with digital to analog converter (DAC) sharing scheme for artificial retinal prostheses. The individual pixel circuits in the stimulator IC share a single 6 bit DAC using the sample-and-hold scheme. The DAC sharing scheme enables the simultaneous stimulation on multiple active pixels with a single DAC while maintaining small size and low power. The layout size of the stimulator circuit with the DAC sharing scheme is reduced to be 51.98 %, compared to the conventional scheme. The stimulator IC is designed using standard $0.18{\mu}m$ 1P6M process. The chip size except the I/O cells is $437{\mu}m{\times}501{\mu}m$.

키워드

참고문헌

  1. M. Ortmanns, A. Rocke, M. Gehrke, and H. Tiedtke, "A 232-Channel Epiretinal Stimulator ASIC," Solid-State Circuits, IEEE Journal of, Vol. 42, No. 12, pp. 2946-2959, Dec 2007. https://doi.org/10.1109/JSSC.2007.908693
  2. W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. de Juan, J. D. Weiland, and R. Greenberg, "A Neuro-Stimulus Chip with Telemetry Unit for Retinal Prosthetic Device", IEEE journal of Solid-State Circuits, vol. 35, No. 10, pp. 1487-1497, Oct 2000. https://doi.org/10.1109/4.871327
  3. K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang, T. I. Kamins, L. Galambos, R. Smith, J. S. Harris, A. Sher, and D. Palanker, "Photovoltaic retinal prosthesis with high pixel density" Nature Photonics, No. 6, pp. 391-397, Jan 2012. https://doi.org/10.1038/nphoton.2012.104
  4. E. Funatsu, Y. Nitta, Y. Miyake, T. Toyoda, J. Ohta, and K. Kyuma, "An Artificial Retina Chip with Current-Mode Focal Plane Image Processing Functions," Electron Devices, IEEE Transactions on, Vol. 44, No. 10, pp. 1777-1782, Oct 1997. https://doi.org/10.1109/16.628836
  5. K. Chen, Z. Yang, L. Hoang, J. Weiland, M. Humayun, and W. Liu, "An Integrated 256-Channel Epiretinal Prosthesis," Solid-State Circuits, IEEE Journal of, Vol. 45, No. 9, pp. 1946-1956, Sep 2010. https://doi.org/10.1109/JSSC.2010.2055371
  6. I. Kim, J. Song, Y. Zhang, T. Lee, T. Cho, Y. Song, D. Kim, S. Kim, and S. Hwang, "Biphasic electric current stimulates proliferation and induces VEGF production in osteoblasts," Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, Vol. 1763, No. 9, pp. 907-916, Sep 2006. https://doi.org/10.1016/j.bbamcr.2006.06.007
  7. T. Tokuda, K. Hiyama, S. Sawamura, K. Sasagawa, Y. Terasawa, K. Nishida, Y. Kitaguchi, T. Fujikado, Y. Tano, and J. Ohta, "CMOS-Based Multichip Networked Flexible Retinal Stimulator Designed for Image-Based Retinal Prosthesis," Electron Devices, IEEE Transactions on, Vol. 56, No. 11, pp. 2577-2585, Nov 2009. https://doi.org/10.1109/TED.2009.2030552
  8. L. Theogarajan, "A Low-Power Fully Implantable 15-Channel Retinal Stimulator Chip," Solid-State Circuits, IEEE Journal of, Vol. 43, No. 10, pp. 2322-2337, Nov 2008. https://doi.org/10.1109/JSSC.2008.2004331
  9. E. Noorsal, K. Sooksood, H. Xu, R. Hornig, J. Becker, and M. Ortmanns, "A Neural Stimulator Frontend With High-Voltage Compliance and Programmable Pulse Shape for Epiretinal Implants," Solid-State Circuits, IEEE Journal of, Vol. 47, No. 1, pp. 244-256, Jan 2012. https://doi.org/10.1109/JSSC.2011.2164667
  10. J. C. Williams, J. A. Hippensteel, J. Dilgen, W. Shain, and D. R. Kipke, "Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants," Journal of Neural Engineering, Vol. 4, pp.410-423, Nov 2007. https://doi.org/10.1088/1741-2560/4/4/007
  11. A. Stett, W. Barth, S. Weiss, H. Haemmerle, and E. Zrenner, "Electrical multisite stimulation of the isolated chicken retina," Vision research, Vol. 40, pp.1785-1795, Jun 2000. https://doi.org/10.1016/S0042-6989(00)00005-5
  12. C. Sekirnjak, P. Hottowy, A. Sher, W. Dabrowski, A. M. Litke, and E. J. Chichilnisky, "Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays," Journal of neurophysiology, Vol. 95, pp.3311-3327, Jan 2006. https://doi.org/10.1152/jn.01168.2005

피인용 문헌

  1. Fabrication and evaluation of nanostructured microelectrodes for high-spatial resolution in retinal prostheses pp.1432-1858, 2019, https://doi.org/10.1007/s00542-018-4276-5