DOI QR코드

DOI QR Code

Heat Dissipation Technology of IGBT Module Package

IGBT 전력반도체 모듈 패키지의 방열 기술

  • 서일웅 (서울과학기술대학교 NID 융합기술대학원) ;
  • 정훈선 (서울과학기술대학교 NID 융합기술대학원) ;
  • 이영호 (우진산전(주)) ;
  • 김영훈 (에스피반도체 통신(주)) ;
  • 좌성훈 (서울과학기술대학교 NID 융합기술대학원)
  • Received : 2014.09.04
  • Accepted : 2014.09.18
  • Published : 2014.09.30

Abstract

Power electronics modules are semiconductor components that are widely used in airplanes, trains, automobiles, and energy generation and conversion facilities. In particular, insulated gate bipolar transistors(IGBT) have been widely utilized in high power and fast switching applications for power management including power supplies, uninterruptible power systems, and AC/DC converters. In these days, IGBT are the predominant power semiconductors for high current applications in electrical and hybrid vehicles application. In these application environments, the physical conditions are often severe with strong electric currents, high voltage, high temperature, high humidity, and vibrations. Therefore, IGBT module packages involves a number of challenges for the design engineer in terms of reliability. Thermal and thermal-mechanical management are critical for power electronics modules. The failure mechanisms that limit the number of power cycles are caused by the coefficient of thermal expansion mismatch between the materials used in the IGBT modules. All interfaces in the module could be locations for potential failures. Therefore, a proper thermal design where the temperature does not exceed an allowable limit of the devices has been a key factor in developing IGBT modules. In this paper, we discussed the effects of various package materials on heat dissipation and thermal management, as well as recent technology of the new package materials.

Keywords

References

  1. K. Shinohara and Q. Yu, "Fatigue life evaluation accuracy of power devices using finite element method", International Journal of Fatigue, 33(9), 1221 (2011). https://doi.org/10.1016/j.ijfatigue.2011.03.009
  2. J. He, W. L. Morris, M. C. Shaw, J. C. Mather and N. Sridhar, "Reliability in large area solder joint assemblies and effects of thermal expansion mismatch and die size", International Journal of Microcircuits and Electronic Packaging., 21(3), 297 (1998).
  3. L. L. Liao, T.Y . Hung, C. K. Liu, W. Li, M. J. Dai and K. N. Chiang, "Electro-thermal finite element analysis and verification of power module with aluminum wire", Microelectronic Engineering, 120, 114 (2014). https://doi.org/10.1016/j.mee.2013.12.033
  4. T. Y. Hung, S. Y. Chiang, C. Y. Chou, C. C. Chiu and K. N. Chiang, "Thermal design and transient analysis of insulated gate bipolar transistors of power module", Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), Proc. 12th IEEE Intersociety Conference, Las Vegas, 1 (2010).
  5. N. K. Kim, Y. T. Choi, S. C. Kim, J. M. Park and E. D. Kim, "Thermal and stress analysis of power IGBT module package by finite element method", J. microelectron. packag. Soc., 6(4), 23 (1999).
  6. K. S. Kim, D. H. Choi and S. B. Jung, "Overview on thermal management technology for high power device packaging", J. Microelectron. Packag. Soc., 21(2), 13 (2014).
  7. M. Ciappa, "Selected failure mechanisms of modern power modules", Microelectronics Reliability, 42, 653 (2002). https://doi.org/10.1016/S0026-2714(02)00042-2
  8. O. Schilling, M. Schfer, K. Mainka, M. Thoben and F. Sauerland, "Power cycling testing and FE modelling focussed on Al wire bond fatigue in high power IGBT modules", Microelectronics Reliability, 52, 2347 (2012). https://doi.org/10.1016/j.microrel.2012.06.095
  9. E. Marcault, M. Breil, A. Bourennane, P. Tounsi, P. Dupuy, "Impact of the solder joint ageing on IGBT I-V characteristics using 2D physical simulations", Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Proc. 12th International Conference, Linz, 1/4 (2011).
  10. W. Wu, M. Held, P. Jacob, P. Scacco and A. Birolini, "Investigation on the long term reliability of power IGBT modules", Proc. 7th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Yokohama, 443 (1995)
  11. A. Morozumi, K. Yamada and T. Miyasaka, "Reliability design technology for power semiconductor modules", Fuji Electronic Review, 47(2), 54 (2001).
  12. Z Wang, W. Qiao, B. Tian and L. Qu. "An Effective Heat Propagation Path-Based Online Adaptive Thermal Model for IGBT Modules", Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 513, 2014 Twenty-Ninth Annual IEEE (2014).
  13. T. Ishizaki, T. Satoh, A. Kuno, A. Tane, M. Yanase, F. Osawa and Y. Yamada, "Thermal characterizations of Cu nanoparticle joints for power semiconductor devices", Microelectronics Reliability, 53, 1543 (2013). https://doi.org/10.1016/j.microrel.2013.07.042
  14. R. Hocine, A. B. Stambouli and A. Saidane, "A Three-dimensional TLM Simulation method for thermal effect in high power insulated gate bipolar transistors", Microelectronic engineering, 65, 293 (2003). https://doi.org/10.1016/S0167-9317(02)00903-6
  15. Y. H. Kwak, Y. K. Lee, J. H. Cho, C. S. Hong, K. S. Kim and B. S. Suh, "Numerical study on thermal characteristics of high power semiconductor modules", Transactions of Korean Institute of Power electronics, 7, 87 (2013).
  16. Y. Xu and D. C. Hopkins, "Misconception of thermal spreading angle and misapplication to IGBT power modules", Applied Power Electronics Conference and Exposition (APEC), Fort Worth, 545, 2014 Twenty-Ninth Annual IEEE (2014).
  17. S. H. Pulko, R. Hocine, A. B. Stambouli and A. Saidane, "TLM method for thermal investigation of IGBT modules in PWM mode", Microelectronic engineering, 86, 2053 (2009). https://doi.org/10.1016/j.mee.2009.01.086
  18. M. M. Yovananovich and E. E Marotta, "Thermal spreading and contact resistances", Heat Transfer Handbook, A. Bejan and A.D. Kraus, John Wiley & Sons Inc., pp.261-395 (2003).
  19. S. Narumanchi, M. Mihalic, K. Kelly and G. Eesley, "Thermal interface materials for power electronics applications", Proc. 11th Intersociety Conference Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM), Orlando, 395 (2008).
  20. R. Prasher, "Thermal interface materials : historical perspective, status and future directions", Proceedings of the IEEE, 94(8), 1571 (2006). https://doi.org/10.1109/JPROC.2006.879796
  21. B. A. Cola, J. Xu, C. Cheng, X. Xu, T.S. Fisher and H. Hu, "Photoacoustic characterization of carbon nanotube array thermal interfaces", J. Appl. Phys., 101, 054313 (2007). https://doi.org/10.1063/1.2510998
  22. R. Sprlak, J. Oplutil, D. Kalvar and P. Chlebis, "Design of experimental liquid heat sink for high power electronic", Proc. 14th International Conference Environment and Electrical Engineering (EEEIC), Krakow, 392 (2014).
  23. Y. Wang, S. Jones, A. Dai and G. Liu, "Reliability enhancement by integrated liquid cooling in power IGBT modules for hybrid and electric vehicles", Microelectronics Reliability. 권 호, 페이지? (2014). https://doi.org/10.1016/j.microrel.2014.07.037
  24. P. Cova, N. Delmonte, F. Giuliani, M. Citterio, S. Latorre, M. Lazzaroni and A. Lanza, "Thermal optimization of water heat sink for power converters with tight thermal constraints", Microelectronics Reliability, 53, 1760 (2013). https://doi.org/10.1016/j.microrel.2013.07.035
  25. E. Neubauer, P. Angerer and G. Korb, "Heat sink materials with tailored properties for thermal management", Proc. 28th International Spring Seminar on Electronics Technology: Meeting the Challenges of Electronics Technology Progress, Wiener Neustadt, 272, IEEE (2005).
  26. E. Neubauer and P. Angerer, "Advanced Composite Materials with Tailored Thermal Properties for Heat Sink Applications", European Conference on Power Electronics and Applications, Aalborg, 1, IEEE (2007).

Cited by

  1. Power Module Packaging Technology with Extended Reliability for Electric Vehicle Applications vol.21, pp.4, 2014, https://doi.org/10.6117/kmeps.2014.21.4.001