DOI QR코드

DOI QR Code

A Synthesis of Iron Oxide Based and Gadolinium Oxide Based Radiosensitizer for the Therapeutic Enhancement of Proton Beam Cancer

양성자 빔 암치료효과 개선을 위한 산화철 및 산화가돌리늄 나노입자 기반의 방사선증감제 합성

  • Kang, Bo Sun (Department of Radiological Science, Konyang University)
  • Received : 2014.08.28
  • Accepted : 2014.10.25
  • Published : 2014.10.30

Abstract

Metallic nanoparticles have attractive properties in biomedical applications such as diagnostics and therapeutics. Cross linked dextran coated iron oxide nanoparticles (SPIONs) and silica coated gadolinium oxide nanoparticles (SPGONs) have been synthesized as a radiosensitizer in the proton beam cancer therapy. The dextran and silicaused for the protective moieties on the SPIONs and SPGONs respectively. Size distributions of synthesized nanoparticles were confirmed 3~5 nm for SPIONs and 30~100 nm for SPGONs by transmission electron microscope (TEM). Cell survival fraction measurement and Western blot assay were performed to evaluate the radiosensitization effects of synthesized radiosensitizer. The calculated radiosensitization of SPIONs and SPGONs at 90 % cell death from the measured cell survival curves were 1.23 and 1.03 respectively. Western blotting results also show the same consistent results that the amount of released cytochrome c from mitochondria was considerably increased for the cancer cells taken up SPIONs.

금속나노입자는 진단이나 치료를 포함한 의생명응용분야에 있어 매력적인 특징들을 갖고 있다. 양성자 빔 치료를 위한 방사선증감제로 사용하기 위해 가교덱스트란이 코팅된 산화철나노입자(SPIONs)와 실리카가 코팅된 산화가돌리늄나노입자(SPGONs)를 합성하였다. 덱스트란과 실리카는 각각 SPIONs와 SPGONs의 보호수단이다. 합성된 SPIONs와 SPGONs를 투과전자현미경(TEM)으로 분석한 결과 각각 평균 직경이 3~5 nm와 30~100 nm였다. 합성된 방사선 증감제의 효과를 평가하기 위해 세포생존곡선 측정과 Western blotting을 수행하였다. 측정된 세포생존곡선으로부터 계산된 90% 세포사멸 시 방사선증감비는 SPIONs와 SPGONs에 대하여 각각 1.23과 1.03이었다. Western blotting 결과 역시 Cytochrome C의 발현량이 SPIONs를 처리한 암세포에서 유의적으로 증가됨을 보였다.

Keywords

References

  1. Barth RF, Coderre JA, Vicente MG, Blue TE, "Boron neutron capture therapy of cancer: current status and future prospects", Clin Cancer Res, Vol. 11, No. 11, pp. 3987-4002
  2. Iwagami et al., "Boron Carbide Particle as a Boron Compound for Boron Neutron Capture Therapy", Nucl Med Radiat Ther 2014, 5:177 (online journal, http://omicsonline.org/nuclear-medicine-radiation-therapy.php)
  3. Coderre JA, Morris GM, "The radiation biology of boron neutron capture therapy", Radiat Res, Vol. 151, No. 1, pp. 1-18
  4. H. Yang, C. Liu, D. Yang, H. Zhang and Z. Xi, "Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition ", Journal of Applied Toxicology, Vol. 29, No. 1, pp. 69-78
  5. M. M. Lin, S. Li, H.-H. Kim, H. Kim, H. B. Lee, M. Muhammed and D. K. Kim, "Complete separation of magnetic nanoparticles via chemical cleavage of dextran by ethylene diamine for intracellular uptake", Journal of Materials Chemistry, Vol. 20, No. 3, pp. 444-447
  6. R. N. Kjellberg, T. Hanamura, K. R. Davis, S. L. Lyons and R. D. Adams, "Bragg-Peak Proton-Beam Therapy for Arteriovenous Malformations of the Brain", New England Journal of Medicine, Vol. 309, No. 5, pp. 269-274
  7. R. Orecchia, A. Zurlo, A. Loasses, M. Krengli, G. Tosi, S. Zurrida, P. Zucali and U. Veronesi, "Particle beam therapy (hadrontherapy): basis for interest and clinical experience", European Journal of Cancer, Vol. 34, No. 4, pp. 459-468
  8. D. R. Olsen, O. S. Bruland, G. Frykholm and I. N. Norderhaug, "Proton therapy-A systematic review of clinical effectiveness", Radiotherapy and Oncology, Vol. 83, No. 2, pp. 123-132
  9. L. H. Toburen, "Distributions in Energy and Angle of Electrons Ejected from Molecular Nitrogen by 0.3-to 1.7-MeV Protons", Physical Review A, Vol. 3, No. 1, pp. 216-227
  10. T. Igel, R. Pfandzelter and H. Winter, "Proton-induced Auger electrons from ultrathin Mn films on Fe (100)", Surface Science, Vol. 405 No. 2-3, pp. 182-191
  11. F. Folkmann, C. Gaarde, T. Huus and K. Kemp, "Proton induced X-ray emission as a tool for trace element analysis", Nuclear Instruments and Methods, Vol. 116, No. 3, pp. 487-499
  12. L. Milas, K. Kishi, N. Hunter, K. Mason, J. L. Masferrer and P. J. Tofilon, "Enhancement of Tumor Response to $\gamma$-Radiation by an Inhibitor of Cyclooxygenase-2 Enzyme", Journal of the National Cancer Institute, Vol. 91, No. 17, pp. 1501-1504
  13. R. M. Kluck, E. Bossy-Wetzel, D. R. Green and D. D. Newmeyer, "The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis", Science, Vol. 275, No. 5303, pp. 1132-1136
  14. A. Jordan, R. Scholz, P. Wust, H. Fahling and F. Roland, "Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles", Journal of Magnetism and Magnetic Materials Vol. 201 No. 1-3, pp. 413-419