DOI QR코드

DOI QR Code

0.18 ㎛ CMOS 공정을 이용한 실리콘 뉴런 회로 설계

Design of a Silicon Neuron Circuit using a 0.18 ㎛ CMOS Process

  • 투고 : 2014.03.09
  • 심사 : 2014.08.22
  • 발행 : 2014.10.25

초록

생물학적 신경 세포의 모델링을 위한 펄스타입 실리콘 뉴런 회로를 $0.18{\mu}m$ CMOS 공정을 이용하여 반도체 집적회로로 설계하였다. 제안하는 뉴런 회로는 입력 전류신호를 위한 커패시터 입력단과, 출력 전압신호 생성을 위한 증폭단 및 펄스신호 초기화를 위한 MOS 스위치로 구성된다. 전압신호 입력을 전류신호 출력으로 변환하는 기능의 시냅스 회로는 몇 개의 PMOS와 NMOS 트랜지스터로 이루어지는 범프회로를 사용한다. 제안하는 뉴런 모델의 검증을 위하여, 2개의 뉴런과 시냅스가 직렬연결된 뉴런체인을 구성하여 SPICE 모의실험을 실시하였다. 모의실험 결과, 뉴런신호의 생성과 시냅스 전달특성의 정상적인 동작을 확인하였다.

Using $0.18{\mu}m$ CMOS process silicon neuron circuit of the pulse type for modeling biological neurons, were designed in the semiconductor integrated circuit. Neuron circuiSt providing is formed by MOS switch for initializing the input terminal of the capacitor to the input current signal, a pulse signal and an amplifier stage for generating an output voltage signal. Synapse circuit that can convert the current signal output of the input voltage signal, using a bump circuit consisting of NMOS transistors and PMOS few. Configure a chain of neurons for verification of the neuron model that provides synaptic neurons and two are connected in series, were performed SPICE simulation. Result of simulation, it was confirmed the normal operation of the synaptic transmission characteristics of the signal generation of nerve cells.

키워드

참고문헌

  1. H.J. Song, J.G. Harris. A CMOS neural oscillator using negative resistance, IEEE International symposium on Circuits and Systems, pp. 152-155 Thailand, May 2003.
  2. M. Mahowald and R. Douglas, "A silicon neuron," Nature, vol. 354, pp. 515-518, 1991. https://doi.org/10.1038/354515a0
  3. C. Toumazou, J. Georgiou and E. M. Drakakis, "Current-mode analogue circuit representation of Hodgkin and Huxley neuron equations," Electronics Letters, vol. 34, no. 14, pp. 1376-1377, 1998. https://doi.org/10.1049/el:19980989
  4. G. Indiveri, E. Chicca, and R. Douglas, "A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity," IEEE Transactions on Neural Networks, vol. 17, no. 1 pp. 211-221, 2006. https://doi.org/10.1109/TNN.2005.860850
  5. Q. Luo, J.G. Harris. "A novel neural oscillator and its implementation in analog VLSI," IEEE International symposium on Circuits and Systems, pp. 245-248, Australia, May 2001.
  6. Giacomo Indiveri "A low-power adaptive integrate-and-fire neuron circuit," In IEEE 2003
  7. T. Taniguchi. Y. Horio and K. Aihara, "An IC Implementation of Asynchronous Pulse Neuron Model:' in Roc. International Symposium on Nonlinear Theory and its applications, pp. 921-924. 2002.
  8. Bo Liu, and James F. Frenzel, ""A CMOS Neuron for VLSI Circuit Implementation of Pulsed Neural Networks,"" Proceedings of the 2th annual conference of IEEE industrial Electronics society, 2002
  9. Wijekoon, J.H.B. & Dudek, P. Spiking and burstingfiring patterns of a compact VLSI cortical neuron circuit, Proceedings of International Joint Conference on Neural Networks 1332-1337 2007.
  10. Vogelstein, U., Vogelstein, J.T. & Cauwenberghs, G.Dynamically reconfigurable silicon array of spiking neurons with conductance-based synapses, IEEE Trans. Neural Networks 18, 253-265 2007. https://doi.org/10.1109/TNN.2006.883007
  11. Carver Mead, Analog VLSI and neural systems, Addison-wesley publishing company, 1989.