References
- Choi, J.E. Kim, J.H. Choi, B.J. Lee, S.B. Chung, S.H. & Seo, H.W., 2013. Development of energy-saving devices for a full slow-speed ship through Improving propulsion performance. Proceedings of the PRADS2013, CECO, Changwon City, Korea, 20-25 October 2013.
- Hochkirch, K. & Bertram, V., 2009. Slow steaming bulbous bow optimization for a large containership. 8th COMPIT, Budapest, Hungary, 10-12 May 2009.
- Hollenbach, U. & Reinholz, O., 2011. Hydrodynamic trends in optimizing propulsion. Second International Symposium on Marine Propulsors - smp'11, Hamburg, Germany, 15-17 June 2011.
- Lee, S.B. & Lee, Y.M., 2014. Statistical Reliability Analysis of Numerical Simulation to Predict Ship Resistance Journal of the Society of Naval Architects of Korea, 51(4), pp.321-327. https://doi.org/10.3744/SNAK.2014.51.4.321
- Park, D.W. Lee, S.B. Chung, S.S. Seo, H.W. & Kwon, J.W., 2013. Effect of Trim on Resistance Performance of a Ship. Journal of the Society of Naval Architects of Korea, 50(2), pp.88-94. https://doi.org/10.3744/SNAK.2013.50.2.88
- Yang, J.M. & Kim, H.C., 2005. Prediction of Propulsive Performance of VLCC at Heeled and Trimmed Conditions. Journal of the Society of Naval Architects of Korea, 42(2), pp.307-314. https://doi.org/10.3744/SNAK.2005.42.4.307
- Yang, J.M. Rhee, S.H. & Kim, H.C., 2006. A Study on the Effect of the Heeled and Trimmed Conditions on Propulsive Performance of VLCC. Journal of the Society of Naval Architects of Korea, 43(3), pp.275-284. https://doi.org/10.3744/SNAK.2006.43.3.275
Cited by
- Analysis of Resistance Performance for Various Trim Conditions on Container ship Using CFD vol.29, pp.3, 2015, https://doi.org/10.5574/KSOE.2015.29.3.224
- Study on Resistance Component of Container Ship According to Trim Conditions vol.29, pp.6, 2015, https://doi.org/10.5574/KSOE.2015.29.6.411
- Prediction of Ship Manoeuvring Performance Based on Virtual Captive Model Tests vol.52, pp.5, 2015, https://doi.org/10.3744/SNAK.2015.52.5.407
- Prediction of fishing boat performance using computational fluid dynamics vol.40, pp.7, 2016, https://doi.org/10.5916/jkosme.2016.40.7.574
- Direct Numerical Simulations of Turbulent Boundary Layer using OpenFOAM and Adapted Mesh vol.53, pp.3, 2016, https://doi.org/10.3744/SNAK.2016.53.3.210