DOI QR코드

DOI QR Code

Analysis of Effect of Risk Factors on the Success of Risk Management

리스크요소가 리스크관리 성공에 미치는 영향 분석 연구

  • Chung, Yeon-Kyo (Department of Civil, Environmental and Architectural, Korea University) ;
  • Chung, Byeong-Hwa (Department of Civil Engineering, Kyeongbuk College)
  • Received : 2014.04.29
  • Accepted : 2014.08.06
  • Published : 2014.10.20

Abstract

Although risk reduction of construction projects have been continued, the risk of fatal accident has been increased. The purpose of this paper is to reduce the cause of the essential risk factors. Questionnaire survey of construction companies in domestic was conducted and the Multiple Regression Analysis of statistics program was used to grasp effective factors among the risk factors of construction companies in domestic. Development of the essential risk factors and its application to projects could lead to improvements such as compression of network, reduction of cost, improvement of quality and reduction of safety accident.

최근 건설프로젝트에서 발생하는 리스크는 매년 감소하고 있지만 사망사고 등 중대리스크는 증가하는 실정이다. 이에 본 연구에서는 국내 건설회사의 리스크요소를 분석하기 위해 설문조사를 수행하였다. 그 결과 리스크관리 성공에 미치는 영향 요소인 공정, 공사비, 공사계획, 공사성공률, 발주자 만족도, 타공사 성공률 등을 종속변수로 하고 국내 건설회사의 리스크요소를 독립변수로 하여 다중회귀분석으로 분석하였다. 분석결과 리스크관리 성공에 미치는 리스크요소로는 Prototype선정, Simulation, 안전조직도 등이 중요한 요소로 분석되었다.

Keywords

References

  1. CERIK. Kunsul Kyanlee and Kyeongyeong [Construction Management and Administration]. 1st ed. Seoul(Korea): Boseongkak; 1997. 635 p. Korean.
  2. Ministry of Employment and Labor. 2012 Sanub Jaehae Hyeonhwang [2012 The Present Condition Industrial Accidents]. Seoul(Korea): Ministry of Employment and Labor; 2013. 11 p. Korean.
  3. Raz T, Michael E. Use and benefits of tools for project risk management. International Journal of Project Management. 2001 May;19(2):9-17. https://doi.org/10.1016/S0263-7863(99)00036-8
  4. Amirhossein MA. Forecasting contractor's deviation from the client objectives in prequalification model using support vector regression. International Journal of Project Management. 2013 Aug;31(6):924-36. https://doi.org/10.1016/j.ijproman.2012.11.002
  5. Hamdi A. Bashir HA. Modeling of development time for hydroelectric generators using factor and mutiple regression analyses. International Journal of Project Management. 2008 May;26(4):457-64. https://doi.org/10.1016/j.ijproman.2007.08.006
  6. Mohd AA. The accuracy of preliminary cost estimates in public works department of Peninsular Malaysia. International Journal of Project Management. 2013 Oct;31(7):994-1005. https://doi.org/10.1016/j.ijproman.2012.11.008
  7. Kim MH. Kunsul Kyeongyeong Konghak[Construction Management Engineering]. 1st ed. Seoul(Korea): Kimundang; 1999. 692 p. Korean.
  8. Chung BH, Kim SD. Improvement Plan and Analysis of Construction Safety Management for Risk Management. Journal of the Korea Institute of Building Construction. 2006 Dec;6(4):53-60. https://doi.org/10.5345/JKIC.2006.6.4.053
  9. Jung YH. Tongkae Kangeui and Jalyobunsuk [Statistical Lecture and Data Analysis SAS]. 2nd ed. Kwangju(Korea): Kwangju Social Research Center; 2000. 549 p. Korean.
  10. Song CG, Baek OG, Naega Haneun Tongkae bunsuk SPSS [I do Statistical Analysis SPSS] 1st ed. Seoul(Korea): Hakgisa; 2011. 428 p. Korean.

Cited by

  1. A Study of Pre-assessment Framework for Business Environment for Delivering Projects in a New Overseas Market vol.16, pp.3, 2015, https://doi.org/10.6106/KJCEM.2015.16.3.078