DOI QR코드

DOI QR Code

Numerical Study of Polarization-Dependent Emission Properties of Localized-Surface-Plasmon-Coupled Light Emitting Diodes with Ag/SiO2 Na

  • Moon, Seul-Ki (Department of Optical Engineering, Kongju National University) ;
  • Yang, Jin-Kyu (Department of Optical Engineering, Kongju National University)
  • Received : 2014.07.17
  • Accepted : 2014.09.11
  • Published : 2014.10.25

Abstract

We study polarization-dependent spontaneous emission (SE) rate and light extraction efficiency (LEE) in localized-surface-plasmon (LSP)-coupled light emitting diodes (LEDs). The closely packed seven $Ag/SiO_2$ core-shell (CS) nanoparticles (NPs) lie on top of the GaN surface for LSP coupling with a radiated dipole. According to the dipole direction, both the SE rate and the LEE are significantly modified by the LSP effect at the $Ag/SiO_2$ CS NPs when the size of Ag, the thickness of $SiO_2$, and the position of the dipole source are varied. The enhancement of the SE rate is related to an induced dipole effect at the Ag, and the high LEE is caused by light scattering with an LSP mode at $Ag/SiO_2$ CS NPs. We suggest the optimum position of the quantum well (QW) in blue InGaN/GaN LEDs with $Ag/SiO_2$ CS NPs for practical application.

Keywords

References

  1. E. F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2006).
  2. M. H. Crawford, "LEDs for solid-state lighting: Performance challenges and recent advances," IEEE J. Select. Topics Quantum Electron. 15, 1028-1040 (2009). https://doi.org/10.1109/JSTQE.2009.2013476
  3. D. F. Feezell, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Semipolar (20 ${\bar{2}}{\bar{1}}$) InGaN/GaN light-emitting diodes for high-efficiency solid-state lighting," J. Disp. Technol. 9, 190-198 (2013). https://doi.org/10.1109/JDT.2012.2227682
  4. M. J. Cich, R. I. Aldaz, A. Chakraborty, A. David, M. J. Grundmann, A. Tyagi, M. Zhang, F. M. Steranka, and M. R. Krames, "Bulk GaN based violet light-emitting diodes with high efficiency at very high current density," Appl. Phys. Lett. 101, 223509 (2012). https://doi.org/10.1063/1.4769228
  5. J. J. Wierer, A. David, and M. M. Megens, "III-nitride photonic-crystal light-emitting diodes with high extraction efficiency," Nat. Photon. 3, 163-169 (2009). https://doi.org/10.1038/nphoton.2009.21
  6. T.-X. Lee, K.-F. Gao, W.-T. Chien, and C.-C. Sun, "Light extraction analysis of GaN-based light-emitting diodes with surface texture and/or patterned substrate," Opt. Express 15, 6670-6676 (2007). https://doi.org/10.1364/OE.15.006670
  7. U. T. Schwarz, H. Braun, K. Kojima, Y. Kawakami, S. Nagahama, and T. Mukai, "Interplay of built-in potential and piezoelectric field on carrier recombination in green light emitting InGaN quantum wells," Appl. Phys. Lett. 91, 123503 (2007). https://doi.org/10.1063/1.2786602
  8. A. Khan, K. Balakrishnan, and T. Katona, "Ultraviolet light-emitting diodes based on group three nitrides," Nat. Photon. 2, 77-84 (2008). https://doi.org/10.1038/nphoton.2007.293
  9. J. Vuckovic, M. Loncar, and A. Scherer, "Surface plasmon enhanced light-emitting diode," IEEE J. Quantum Electron. 36, 1131-1144 (2000). https://doi.org/10.1109/3.880653
  10. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mater. 3, 601-605 (2004). https://doi.org/10.1038/nmat1198
  11. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102 (2005). https://doi.org/10.1063/1.2010602
  12. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-plasmon-enhanced light-emitting diodes," Adv. Mater. 20, 1253-1257 (2008). https://doi.org/10.1002/adma.200701130
  13. C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, "Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array," Adv. Funct. Mater. 21, 4719-4723 (2011). https://doi.org/10.1002/adfm.201101814
  14. L.-W. Jang, D.-W. Jeon, M. Kim, J.-W. Jeon, A. Y. Polyakov, J.-W. Ju, S.-J. Lee, J.-H. Baek, J.-K. Yang, I.-H. Lee, "Investigation of optical and structural stability of localized surface plasmon mediated light-emitting diodes by Ag and $Ag/SiO_2$ nanoparticles," Adv. Func. Mater. 22, 2728-2734 (2012). https://doi.org/10.1002/adfm.201103161
  15. Y. Xu, J. Vuckovic, R. Lee, O. Painter, A. Scherer, and A. Yariv, "Finite-difference time-domain calculation of spontaneous emission lifetime in a microcavity," J. Opt. Soc. Am. B 16, 465-474 (1999). https://doi.org/10.1364/JOSAB.16.000465
  16. N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, "Polarization anisotropy in the electroluminescence of m-plane InGaN-GaN multiple-quantum-well light-emitting diodes," Appl. Phys. Lett. 86, 111101 (2005). https://doi.org/10.1063/1.1875765
  17. H. Masui, T. J. Baker, M. Iza, H. Zhong, S. Nakamura, and S. P. DenBaars, "Light-polarization characteristics of electroluminescence from InGaN/GaN light-emitting diodes prepared on (11 ${\bar{2}}$2)-plane GaN," J. Appl. Phys. 100, 113109 (2006). https://doi.org/10.1063/1.2382667
  18. M. F. Schubert, S. Chhajed, J. K. Kim, and E. F. Schubert, "Polarization of light emission by 460 nm GaInN/GaN light-emitting diodes grown on (0001) oriented sapphire substrates," Appl. Phys. Lett. 91, 051117 (2007). https://doi.org/10.1063/1.2757594
  19. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, "Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes," Appl. Phys. Lett. 97, 171105 (2010). https://doi.org/10.1063/1.3506585
  20. Y. Kuo, S. Y. Ting, C. H. Liao, J. J. Huang, C. Y. Chen, C. Hsieh, Y. C. Lu, C. Y. Chen, K. C. Shen, C. F. Lu, D. M. Yeh, J. Y. Wang, W. H. Chuang, Y. W. Kiang, and C. C. Yang, "Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode," Opt. Express 19, A914-A929 (2011). https://doi.org/10.1364/OE.19.00A914
  21. Y. Kuo, W. Y. Chang, H. S. Chen, Y. W. Kiang, and C. C. Yang, "Surface plasmon coupling with a radiating dipole near an Ag nanoparticle embedded in GaN," Appl. Phys. Lett. 102, 161103 (2013). https://doi.org/10.1063/1.4803042
  22. Y. Kuo, W. Y. Chang, H. S. Chen, Y. R. Wu, C. C. Yang, and Y. W. Kiang, "Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode," J. Opt. Soc. Am. B 30, 2599-2606 (2013). https://doi.org/10.1364/JOSAB.30.002599
  23. S. Jiang, Z. Hu, Z. Chen, X. Fu, X. Jiang, Q. Jiao, T. Yu, and G. Zhang, "Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED," Opt. Express 21, 12100-12110 (2013). https://doi.org/10.1364/OE.21.012100
  24. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House Publishers, Boston, USA, 2000).
  25. http://www.lumerical.com/
  26. S.-K. Moon and J.-K. Yang, "Effect of number of $Ag/SiO_2$ core-shells on quantum efficiency of InGaN/GaN light emitting diodes," in preparation (2014).
  27. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment," J. Phys. Chem. B 107, 668-677 (2003).
  28. H. Mertens, A. F. Koenderink, and A. Polman, "Plasmon-enhanced luminescence near noble-metal nanospheres: Comparison of exact theory and an improved Gersten and Nitzan model," Phys. Rev. B 76, 115-123 (2007).
  29. Y. S. Kim, P. T. Leung, and T. F. George, "Classical decay rates for molecules in the presence of a spherical surface: a complete treatment," Surf. Sci. 195, 1-14 (1988). https://doi.org/10.1016/0039-6028(88)90776-5
  30. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, "Fluorescence relaxation in the near-field of a mesoscopic metallic particle: Distance dependence and role of plasmon modes," Opt. Express 16, 17654-17666 (2008). https://doi.org/10.1364/OE.16.017654
  31. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007). https://doi.org/10.1364/OE.15.014266
  32. I. Abram, I. Rovert, and R. Kuszelwicz, "Spontaneous emission control in semiconductor microcavities with metallic or Bragg mirrors," IEEE J. Quantum Electron. 34, 71-76 (1998). https://doi.org/10.1109/3.655009
  33. Z. Zhang, D. Lim, and R. E. Diaz, "Image theory for plasmon-modified luminescence near nanospheres," Proc. SPIE 8595, 859508 (2013).

Cited by

  1. Density effect of Ag/SiO2 core–shell nanoparticles on optical properties of InGaN/GaN light-emitting diodes vol.57, pp.01, 2018, https://doi.org/10.1117/1.OE.57.1.017111