DOI QR코드

DOI QR Code

배기가스에서 이산화탄소 분리를 위한 재료 및 공정에 대한 이론적 고찰

Study on Materials and Process Systems for $CO_2$ separation from Combustion of Fossil Fuels

  • 한상일 (창원대학교 화공시스템공학과) ;
  • 황규석 (부산대학교 화공생명공학부)
  • Han, Sang-Il (Department of Chemical Engineering, Changwon National University) ;
  • Hwang, Kyu-Suk (School of Chemical&biomolecular Engineering, Pusan National University)
  • 투고 : 2014.07.01
  • 심사 : 2014.08.19
  • 발행 : 2014.09.30

초록

이산화탄소는 온실가스로써 대기 중에 축적되어 지구의 온도를 지속적으로 상승시킨다. 화석연료 기반의 전력 생산에서 발생되는 이산화탄소는 상당량을 차지하며, 향후 수십 년간 화석연료 의존도는 지속적으로 증가할 것으로 예상된다. 따라서 대기 중으로 배출되는 이산화탄소를 분리하는 기술개발은 매우 시급하다. 이산화탄소 분리 기술은 크게 전처리, 후처리, 순산소 연소 방식으로 나뉘며, 본 연구에서는 후처리 제거 공정을 중심으로 제올라이트, 활성탄, MOF 소재의 이산화탄소 분리 특성을 비교하고, 공정기술에 대해 분석하였다.

Carbon dioxide ($CO_2$) is a green-house gas which causes the global warming problems. Anthropogenic emissionspredominantly from the combustion of coal, oil, and natural gas in electricity generations are expected to increase continuously in the future, resulting in increased $CO_2$ concentration in the atmosphere. In this study, we investigated materials properties and process systems for $CO_2$ separation with an emphasis of the post-combustion process.

키워드

참고문헌

  1. R. E. H. Sims, R. N. Schock, A. Adegbululgbe, J. Fenhann, I. Konstantinaviciute, W. Moomaw, H. B. Nimir, B. Schlamadinger, J. Torres-Martinez, C. Turner, Y. Uchiyama, S. J. V. Vuori, N. Wamukonya, and X. Zhang, "Energy Supply. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change", Cambridge University Press, United Kingdom and New York, NY, USA (2007).
  2. J. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yub, H. Jeong, P. B. Balbuena, and H. Zhou, Carbon Dioxide Capture-related Gas Adsorption and Separation in Metal-Organic Frameworks, Coord. Chem. Rev., 255, 1791 (2001).
  3. J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, and R. D. Srivastavab, Advances in $CO_2$ Capture Technology-The U.S. Department of Energy's Carbon Sequestration Program, Internal. J. Greenhouse Gas Control, 2, 9 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  4. D. M. D'Aessandro, B. Smit, and J. R. Long, Carbon Dioxide Capture: Prospects for New Materials, Angew. Chem. Int. Ed.,49, 6058 (2010). https://doi.org/10.1002/anie.201000431
  5. F. Brandani and D. M. Ruthven, The Effect of Water on the Adsorption of $CO_2$ and $C_3H_8$ on Type X Zeolites, Ind. Chem. Res., 43, 8339 (2004). https://doi.org/10.1021/ie040183o
  6. G. T. Rochelle, Amine Scrubbing for $CO_2$ Capture, Science, 325, 1652 (2009). https://doi.org/10.1126/science.1176731
  7. G. Puxty, R. Rowland, A. Allport, Q. Yang, M. Bown, R. Burns, M. Maeder, and M. Attalla, Carbon Dioxide Postcombustion Capture: A Novel Screening Study of the Carbon Dioxide Absorption Performance of 76 Amines, Environ. Sci. Technol., 43, 6427 (2009). https://doi.org/10.1021/es901376a
  8. S. C. Lee, B. Y. Choi, T. J. Lee, C. K. Ryu, Y. S. Ahn, and J. C. Kim, $CO_2$ absorption and regeneration of alkali metal-based solid sorbents, Catal. Today, 111, 385 (2006). https://doi.org/10.1016/j.cattod.2005.10.051
  9. Y. Liang and D. P. Harrison, Carbon Dioxide Capture Using Dry Sodium-Based Sorbents, Energy & Fuels, 18, 569 (2004). https://doi.org/10.1021/ef030158f
  10. A. Samanta, A. Zhao, G. K. H. Shimizu, P. Sarkar, and R. Gupta, Post-Combustion $CO_2$ Capture Using Solid Sorbents: A Review, Ind. Eng. Chem. Res., 51, 1438 (2012). https://doi.org/10.1021/ie200686q
  11. M. E. Davis and R. F. Lobo, Zeolite and Molecular Sieve Synthesis, Chem. Mater., 4(4), 756 (1992). https://doi.org/10.1021/cm00022a005
  12. S. Coriani, A. Halkier, A. Rizzo, and K. Ruud, On themolecular electric quadrupole moment and the electric-fieldgradientinducedbirefringence of $CO_2$ and $CS_2$, Chem. Phys. Lett., 326, 269 (2000). https://doi.org/10.1016/S0009-2614(00)00793-4
  13. E. Diaz, E. Munoz, A. Vega, and S. Ordonez, Enhancement of the $CO_2$ retention capacity of Y zeolites by Na and Cs treatment: Effect ofadsorption temperature and water treatment, Ind. Eng. Chem. Res., 47, 412 (2008). https://doi.org/10.1021/ie070685c
  14. M. Katoh, T. Yoshikawa, T. Tomonari, K. Katayama, and T. Tomida, Adsorption characteristics of ion-exchanged ZSM-5 zeolites for $CO_2/N_2$ mixtures, J. Colloid Interface Sci., 226, 145 (2000). https://doi.org/10.1006/jcis.2000.6795
  15. E. A. Ustinov, D. D. Do, and V. B. Fenelonov, Pore size distribution analysis of activated carbons: Application of density functional theory using nongraphitized carbon black as a reference system, Carbon, 44(4), 653 (2006). https://doi.org/10.1016/j.carbon.2005.09.023
  16. O. K. Farha, I. Eryazici, N. C. Jeong, B. G. Hauser, C. E. Wilmer, A. A. Sarjeant, R. Q. Snurr, S. T. Nguyen, A. O. Yazaydin, and J. T. Hupp, Metal-Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, J. Am. Chem. Soc., 134(36), 15016 (2012). https://doi.org/10.1021/ja3055639
  17. S. Han, Y. Huang, T. Watanabe, Y. Dai, K. S. Walton, S. Nair, D. S. Sholl, and J. C. Meredith, High-Throughput Screening of Metal-Organic Frameworks for $CO_2$ Separation, ACS Comb. Sci., 14(4), 263 (2012). https://doi.org/10.1021/co3000192
  18. K. Sumida, D. L. Rogow, J. A. Mason, T. M. McDonald, E. D. Bloch, Z. R. Herm, T. Bae, and J.R. Long, Carbon Dioxide Capture in Metal-Organic Frameworks, Chem. Rev., 112(2),724 (2012). https://doi.org/10.1021/cr2003272
  19. N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe, and O. M. Yaghi, Hydrogen Storage in Microporous Metal-Organic Frameworks, Science, 300, 1127 (2003). https://doi.org/10.1126/science.1083440
  20. J. L. C. Rowsell and O. M. Yaghi, Strategies for Hydrogen Storage in Metal-Organic Frameworks, Angew. Chem. Int. Ed., 44(30), 4670 (2005). https://doi.org/10.1002/anie.200462786
  21. S. Ma and H. Zhou, Gas storage in porous metal-organic frameworks for clean energy applications, Chem. Commun., 46, 44 (2010). https://doi.org/10.1039/B916295J
  22. D. D. Do and K. Wang, A new model for the description ofadsorption kinetics in heterogeneous activated carbon, Carbon, 36, 1539 (1998). https://doi.org/10.1016/S0008-6223(98)00145-6
  23. K. Berlier and M. Frere, Adsorption of $CO_2$ on activated carbon:Simultaneous determination of integral heat and isotherm of adsorption, J. Chem. Eng. Data, 41, 1144 (1996). https://doi.org/10.1021/je960080f
  24. M. Heuchel, G. M. Davies, E. Buss, and N. A. Seaton, Adsorptionof carbon dioxide and methane and their mixtures on an activated carbon: simulation and experiment, Langmuir, 15, 8695 (1999). https://doi.org/10.1021/la9904298
  25. K. Berlier and M. Frere, Adsorption of $CO_2$ on microprous. 1. Onactivated carbon and silica gel, J. Chem. Eng. Data, 42, 533 (1997). https://doi.org/10.1021/je9603180
  26. B. K. Na, K. K. Koo, H. M. Eum, H. Lee, and H. K. Song, $CO_2$ recovery from flue gas by PSA process using activated carbon, Korean J. Chem. Eng., 18, 220 (2001). https://doi.org/10.1007/BF02698463
  27. S. Sircar and T. C. Golden, Isothermal and isobaric desorption ofcarbon dioxide by purge, Ind. Eng. Chem. Res., 34, 2881 (1995). https://doi.org/10.1021/ie00047a042
  28. R. V. D. Vaart, C. Huiskes, H. Bosch, and T. Reith, Single andmixed gas adsorption equilibria of carbon dioxide/methane on activatedcarbon, Adsorption 6, 311 (2000). https://doi.org/10.1023/A:1026560915422
  29. G. Calleja, A. Jimenez, J. Pau, L. Dominguez, and P. Pbrez, Multicomponent adsorption equilibrium of ethylene, propane, propyleneand $CO_2$ on 13X zeolites, Gas. Sep. Purif., 8, 247 (1994). https://doi.org/10.1016/0950-4214(94)80005-7
  30. K. Kamiuto, S. Abe, and Ermalina, Effect of desorption temperatureon $CO_2$ adsorption equilibria of the honeycomb zeolite beds, Appl. Energy, 72, 555 (2002). https://doi.org/10.1016/S0306-2619(02)00048-X
  31. P. J. E. Harlick and F. H. Tezel, Adsorption of carbon dioxide, methane and nitrogen: pure and binary mixture adsorption for ZSM-5with $SiO_2/Al_2O_3$ ratio of 280, Sep. Purif. Technol., 33, 199 (2003). https://doi.org/10.1016/S1383-5866(02)00078-3
  32. P. J. E. Harlick and F. H. Tezel, An experimental adsorbentscreening study for $CO_2$ removal from $N_2$, Micro. Meso. Mater., 76, 71 (2004). https://doi.org/10.1016/j.micromeso.2004.07.035
  33. M. Katoh, T. Yoshikawa, T. Tomonari, K. Katayama, and T. Tomida, Adsorption characteristics of ion-exchanged ZSM-5 zeolites for $CO_2/N_2$ mixtures, J. Colloid Interface Sci., 226, 145 (2000). https://doi.org/10.1006/jcis.2000.6795
  34. V. R. Choudhary, S. Mayadevi, and A. P. Singh, Sorption isothermsof methane, ethane, ethene and carbon dioxide on NaX, NaY and Namordenitezeolites, J. Chem. Soc. Faraday Trans., 91, 2935 (1995). https://doi.org/10.1039/ft9959102935
  35. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and J. R. Long, Evaluating Metal-Organic Frameworks for Post-Combustion Carbon Dioxide Capture via Temperature Swing Adsorption, Energy Environ. Sci., 4, 3030 (2011). https://doi.org/10.1039/c1ee01720a
  36. P. D. C. Dietzel, V. Besikiotis, and R. Blom, Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide, J. Mater. Chem., 19, 7362 (2009). https://doi.org/10.1039/b911242a
  37. P. Aprea, D. Caputo, N. Gargiulo, F.Iucolano, and F. Pepe, Modeling carbon dioxide adsorption on microporous substrates: Comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve, J. Chem. Eng. Data, 55, 3655 (2010). https://doi.org/10.1021/je1002225
  38. A. O. Yazaydin, R. Q. Snurr, T. Park, K. Koh, J. Liu, M. D. LeVan, A. I. Benin, P. Jakubczak, M. Lanuza, D. B. Galloway, J. L. Low, and R. R. Willis, Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach, J. Am. Chem. Soc., 131, 18198 (2009). https://doi.org/10.1021/ja9057234
  39. A. Demessence, D. M. D'Alessandro, M. L. Foo, and J. R. Long, Strong $CO_2$ binding in a water-stable, triazolatebridged metal-organic framework functionalized with ethylenediamine, J. Am. Chem. Soc., 131(25), 8784 (2009). https://doi.org/10.1021/ja903411w
  40. S. R. Miller, G. M. Pearce, P. A. Wright, F. Bonino, S. Chavan, S. Bordiga, I. Margiolaki, N. Guillou, G. Ferey, S. Bourrelly, and P. L. Llewellyn, Structural Transformations and Adsorption of Fuel-Related Gases of a Structurally Responsive Nickel Phosphonate Metal-Organic Framework, Ni-STA-12, J. Am. Chem. Soc., 130, 15967 (2008). https://doi.org/10.1021/ja804936z
  41. J. T. Yeh and H. W. Pennline, Study of $CO_2$ Absorption and Desorption in a Packed Column, Energy & Fuels, 15, 274 (2001). https://doi.org/10.1021/ef0002389
  42. B. Chalermsinsuwan, P. Piumsomboon, and D. Gidaspow, A Computational Fluid Dynamics Design of a Carbon Dioxide Sorption Circulating Fluidized Bed, AIChE J., 56(11), 2805 (2010). https://doi.org/10.1002/aic.12213
  43. J. A. Mason, K. Sumida, Z. R. Herm, R. Krishna, and J. R. Long, Evaluating metal-organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption, Energy Environ. Sci., 4, 3030 (2011). https://doi.org/10.1039/c1ee01720a
  44. J. Zhang and P. A. Webley, Cycle Development and Design for $CO_2$ Capture from Flue Gas by Vacuum Swing Adsorption, Environ. Sci. Technol., 42(2), 563 (2008). https://doi.org/10.1021/es0706854
  45. W. E. Waldron and S. Sircar, Parametric Study of a Pressure Swing Adsorption Process, Adsorption, 6, 179 (2000). https://doi.org/10.1023/A:1008925703871