DOI QR코드

DOI QR Code

마이크로-CT 뼈 영상 분석을 위한 구 정합 기반 해면뼈의 자동 분할

Automatic Segmentation of Trabecular Bone Based on Sphere Fitting for Micro-CT Bone Analysis

  • 강선경 (원광대학교 LINC사업단) ;
  • 김영운 (원광보건대학교, (주)좋은정보기술) ;
  • 정성태 (원광대학교 컴퓨터공학과)
  • 투고 : 2014.03.11
  • 심사 : 2014.06.09
  • 발행 : 2014.08.31

초록

본 논문에서는 마이크로 CT 영상에서 해면뼈의 형태학적 분석을 위하여 해면뼈를 자동 분할하는 방법을 제안한다. 제안된 방법에서는 임계값을 이용하여 뼈 영역을 추출하고 뼈의 바깥쪽 경계선을 검출한다. 뼈 영역의 각 복셀에 대하여 구 정합을 적용하여 해당 복셀을 중심으로 하는 최대 크기의 구를 구한다. 이 구에 뼈의 바깥쪽 경계선이 포함되면 이 구에 포함된 복셀들은 치밀뼈로 분류되고 그렇지 않으면 해면뼈로 분류된다. 제안된 방법을 쥐의 15개 대퇴골 원위부 영상에 적용하였으며 사람이 수작업으로 분할한 결과와 비교 실험을 수행하였다. 분할된 해면뼈에 대하여 BV/TV, Tb.Th, Tb.Sp, Tb.N의 네 가지 형태학적 지표자를 측정하였다. 회귀분석과 Bland-Altman 방법으로 비교해본 결과 BV/TV, Tb.Th, Tb.Sp, Tb.N 모두 신뢰할 만한 수준의 범위 안에 있었다. 또한 구 정합 방법은 단순하게 구현할 수 있으면서도 3차원 정보를 이용함으로써 해면뼈를 정확하게 분할할 수 있음을 알 수 있었다.

In this study, a new method that automatically segments trabecular bone for its morphological analysis using micro-computed tomography imaging was proposed. In the proposed method, the bone region was extracted using a threshold value, and the outer boundary of the bone was detected. The sphere of maximum size with the corresponding voxel as the center was obtained by applying the sphere-fitting method to each voxel of the bone region. If this sphere includes the outer boundary of the bone, the voxels included in the sphere are classified as cortical bone; otherwise, they are classified as trabecular bone. The proposed method was applied to images of the distal femurs of 15 mice, and comparative experiments, with results manually divided by a person, were performed. Four morphological parameters-BV/TV, Tb.Th, Tb.Sp, and Tb.N-for the segmented trabecular bone were measured. The results were compared by regression analysis and the Bland-Altman method; BV/TV, Tb.Th, Tb.Sp, and Tb.N were all in the credible range. In addition, not only can the sphere-fitting method be simply implemented, but trabecular bone can also be divided precisely by using the three-dimensional information.

키워드

참고문헌

  1. Y. Jiang, J. Zhao, E. Y. Liao, R. C. Dai, X. P. Wu, H. K. Genant, "Application of micro-CT assessment of 3-D bone microstructure in preclinical and clinical studies," Journal of Bone and Mineral Metabolism, Vol.23, No.1, Supplement, pp.122-31, 2005. https://doi.org/10.1007/BF03026336
  2. A. Laib, J. L. Kumer, S. Majumdar, N. E. Lane, "The temporal changes of trabecular architecture in ovariectomized rats assessed by MicroCT," Osteoporos International, Vol.12, No. 11, pp.936-941, 2001. https://doi.org/10.1007/s001980170022
  3. R. Muller, T. Hildebrand, P. Ruegsegger, "Non-invasive bone biopsy: a new method to analyse and display the threedimensional structure of trabecular bone," Physicsin Medicineand Biology, Vol.39, No.1, pp.145-164, 1994.
  4. C. Graeff, F. Marin, H. Petto, O. Kayser, A. Reisinger, J. Pena, P. Zysset, C. C. Gluer, "High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis," Bone, Vol.52, No. 2, pp.568-577, 2013. https://doi.org/10.1016/j.bone.2012.10.036
  5. I. H. Parkinson, D. Forbes, P. Sutton-Smith, and N. L. Fazzalari, "Model-Independent 3D Descriptors of Vertebral Cancellous Bone Architecture," Journal of Osteoporosis, Vol. 2010, Article ID. 641578, 2010.
  6. M. Stauber and R. Muller, "Volumetric spatial decomposition of trabecular bone into rods and plates-A new method for local bone morphometry," Bone, Vol.38, No.4, pp.475-484, 2006. https://doi.org/10.1016/j.bone.2005.09.019
  7. H. R. Buie, G. M. Campbell, R. J. Klinck, J. A. MacNeil, S. K. Boyd, "Automatic segmentation of cortical and trabecular compartments based on a dual threshold technique for in vivo micro-CT bone analysis," Bone 41, pp.505-515, 2007. https://doi.org/10.1016/j.bone.2007.07.007
  8. Rizzo G., Tresoldi D., Scalco E., Mendez M., Bianchi A. M., Moro G. L., Rucinacci A., "Automatic Segmentation of Cortical and Trabecular Components of Bone Specimens by pQCT," 30Th Annual International IEEE EMBS Conference, pp.486-489, 2008.
  9. Alexander Valentinitsch, Janina M. Patsch, Julia Deutschmann, Claudia Schueller-Weidekamm, Heinrich Resch, Franz Kainberger, Georg Langs, "Automated threshold-independent cortex segmentation by 3D-texture analysis of HR-pQCT scans," Bone 51, pp.480-487, 2012. https://doi.org/10.1016/j.bone.2012.06.005
  10. Kitware Inc., "VTK User's Guide," Kitware Inc., 2010.
  11. T. Hildebrand and P. Ruegsegger, "A new method for the medel-independent assessment of thickness in threedimensional images," Journal of Microscopy, Vol.185, Pt.1, pp.67-75, 1997. https://doi.org/10.1046/j.1365-2818.1997.1340694.x
  12. Bland J. M., Altman D.G., "Statistical method for assessing agreement between two methods of clinical measurement," The Lancet, pp.307-310, 1986.